4.由數(shù)字0,1,2,3,4,5組成沒有重復(fù)數(shù)字的六位數(shù),其中百位、十位、個(gè)位數(shù)字總是從小到大排列的共有(  )
A.120個(gè)B.100個(gè)C.300個(gè)D.600個(gè)

分析 利用分步計(jì)算原理求組成六位數(shù)的個(gè)數(shù),根據(jù)中百位、十位、個(gè)位數(shù)字總是從小到大排列,可得答案.

解答 解:數(shù)字0,1,2,3,4,5可組成$A_5^1A_5^5$個(gè)沒有重復(fù)數(shù)字的六位數(shù),百位數(shù)字小于十位數(shù)字與十位數(shù)字小于百位數(shù)字的六位數(shù)的個(gè)數(shù)相等,
故共有$\frac{A_5^1A_5^5}{A_3^3}=100$個(gè),
故選:B.

點(diǎn)評(píng) 本題考查了排列數(shù)公式的應(yīng)用,采用了優(yōu)先法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足條件f(-x+1)=f(x+1),f(2)=0,且方程f(x)=x有兩相等實(shí)根.
(1)求a,b,c
(2)是否存在實(shí)數(shù)m,n(m<n),使得函數(shù)f(x)在定義域?yàn)閇m,n]時(shí),值域?yàn)閇3m,3n].如果存在,求出m,n的值;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若實(shí)數(shù)x,y滿足0<x<y,且 x+y=1,則下列四個(gè)數(shù)中最大的是( 。
A.$\frac{1}{2}$B.x2+y2C.2xyD.x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知極坐標(biāo)系的極點(diǎn)和極軸與平面直角坐標(biāo)的原點(diǎn)和X軸重合時(shí),極坐標(biāo)(2,π)化為平面直角坐標(biāo)是( 。
A.(2,0)B.(-2,0)C.(0,2)D.(0,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{an}為等差數(shù)列,若a1+a5+a9=π,則cos(a2+a8)的值為( 。
A.$-\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=xex+c,若方程f(x)=0有兩個(gè)不相等的實(shí)數(shù)根,則c的取值范圍是(0,$\frac{1}{e}$) .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.cos70°sin80°+cos20°sin10°=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知一個(gè)公園的形狀如圖所示,現(xiàn)有3種不同的植物要種在此公園的A,B,C,D,E這五個(gè)區(qū)域內(nèi),要求有公共邊界的兩塊相鄰區(qū)域種不同的植物,則不同的種法共有18種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,A(a,0),B(0,b),O(0,0),△OAB的面積為4,
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)設(shè)直線l:y=kx+1與橢圓C相交于P,Q兩點(diǎn),是否存在這樣的實(shí)數(shù)k,使得以PQ為直徑的圓過原點(diǎn),若存在,請(qǐng)求出k的值:若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案