18.已知i是虛數(shù)單位,若z(1-i)=|i+1|,則z的虛部為$\frac{\sqrt{2}}{2}$.

分析 設(shè)z=a+bi,根據(jù)復(fù)數(shù)的運(yùn)算得到關(guān)于a,b的方程組,解出即可.

解答 解:設(shè)z=a+bi,
則z(1-i)=(a+bi)(1-i)=(a+b)-(a-b)i=|i+1|=$\sqrt{2}$,
∴$\left\{\begin{array}{l}{a+b=\sqrt{2}}\\{a-b=0}\end{array}\right.$,解得:b=$\frac{\sqrt{2}}{2}$,
故答案為:$\frac{\sqrt{2}}{2}$.

點(diǎn)評 本題考查了復(fù)數(shù)的代數(shù)運(yùn)算,熟練掌握其運(yùn)算性質(zhì)是解題的關(guān)鍵,本題是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列四個命題中,正確的有( 。ㄗⅲ?表示存在,?表示任意)
①兩個變量間的相關(guān)系數(shù)r越小,說明兩變量間的線性相關(guān)程度越低;
②命題p:“?x0∈R,x${\;}_{0}^{2}$-x0-1>0”的否定¬p:“?x∈R,x2-x-1<0”;
③在△ABC中,“A>60°”是“cosA<$\frac{1}{2}$”的充要條件.
④若a=0.32,b=20.3,c=log0.32,則c<a<b.
A.①③④B.①④C.③④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}的首項(xiàng)為a1=1,且${a_{n+1}}=\frac{{{a_n}+4}}{{{a_n}+1}}$,(n∈N*).
(Ⅰ)求a2,a3的值,并證明:a2n-1<a2n+1<2;
(Ⅱ)令bn=|a2n-1-2|,Sn=b1+b2+…+bn.證明:$\frac{9}{8}[{1-{{({\frac{1}{9}})}^n}}]≤{S_n}<\frac{7}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某公司從代理的A,B,C,D四種產(chǎn)品中,按分層抽樣的方法抽取容量為110的樣本,已知A,B,C,D四種產(chǎn)品的數(shù)量比是2:3:2,:4,則該樣本中D類產(chǎn)品的數(shù)量為( 。
A.22B.33C.44D.55

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某校高一舉行了一次數(shù)學(xué)競賽,為了了解本次競賽學(xué)生的成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計(jì),按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).

(1)求樣本容量n和頻率分布直方圖中的x,y的值;
(2)估計(jì)本次競賽學(xué)生成績的中位數(shù)和平均分;
(3)在選取的樣本中,從競賽成績在80分以上(含80分)的學(xué)生中隨機(jī)抽取2名學(xué)生,求所抽取的2名學(xué)生中至少有一人得分在[90,100]內(nèi)的頻率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若g(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$+cos(x-$\frac{π+1}{2}$),則g($\frac{1}{2017}$)+g($\frac{2}{2017}$)+g($\frac{3}{2017}$)+g($\frac{4}{2017}$)+…+g($\frac{2016}{2017}$)的值為2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=2x2+ax-2b,若a,b都是區(qū)間[0,4]內(nèi)的數(shù),則使f(1)<0的概率是( 。
A.$\frac{1}{4}$B.$\frac{3}{8}$C.$\frac{1}{2}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在正方體ABCD-A1B1C1D1,O1,O2分別是正方形ABB1A1、DCC1D1的對角線的交點(diǎn),求證:∠A1O1D1=∠CO2B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知數(shù)列{an}中,a1=1,$\frac{1}{{a}_{n+1}}$=$\frac{1}{{a}_{n}}$+$\frac{1}{3}$,則a10等于( 。
A.$\frac{1}{5}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.以上都不對

查看答案和解析>>

同步練習(xí)冊答案