【題目】醫(yī)藥公司針對(duì)某種疾病開發(fā)了一種新型藥物,患者單次服用制定規(guī)格的該藥物后,其體內(nèi)的藥物濃度隨時(shí)間的變化情況(如圖所示):當(dāng)時(shí),的函數(shù)關(guān)系式為為常數(shù));當(dāng)時(shí),的函數(shù)關(guān)系式為為常數(shù)).服藥后,患者體內(nèi)的藥物濃度為,這種藥物在患者體內(nèi)的藥物濃度不低于最低有效濃度,才有療效;而超過最低中毒濃度,患者就會(huì)有危險(xiǎn).

(1)首次服藥后,藥物有療效的時(shí)間是多長?

(2)首次服藥1小時(shí)后,可否立即再次服用同種規(guī)格的這種藥物?

(參考數(shù)據(jù):,

【答案】(1)小時(shí);(2)見解析

【解析】

(1)當(dāng)時(shí),,函數(shù)圖像過點(diǎn)求出,進(jìn)而求出t=1時(shí),所以當(dāng)時(shí),,函數(shù)圖像過點(diǎn),求出m,解指數(shù)不等式求出t的范圍即可;(2)設(shè)再次服用同等規(guī)格的藥物小時(shí)后的藥物濃度為,當(dāng)時(shí),,根據(jù)單調(diào)性,解得x=1即得解.

(1)當(dāng)時(shí),,函數(shù)圖像過點(diǎn),

所以,得

所以當(dāng)時(shí),

當(dāng)時(shí),,函數(shù)圖像過點(diǎn)

所以,所以

所以

則藥物有療效時(shí)間為小時(shí).

(2)設(shè)再次服用同等規(guī)格的藥物小時(shí)后的藥物濃度為

當(dāng)時(shí),

因?yàn)楹瘮?shù)內(nèi)單調(diào)遞增,

所以當(dāng)時(shí),

當(dāng)時(shí),

因?yàn)?/span>,所以首次服藥后1小時(shí),可以立即再次服用同等規(guī)格的藥物.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公差不為零的等差數(shù)列{an}中,a1 , a2 , a5成等比數(shù)列,且該數(shù)列的前10項(xiàng)和為100,數(shù)列{bn}的前n項(xiàng)和為Sn , 且滿足Sn= ,n∈N*
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)記得數(shù)列{ }的前n項(xiàng)和為Tn , 求Tn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過雙曲線 =1(a>0,b>0)的右焦點(diǎn)F作一條直線,當(dāng)直線斜率為l時(shí),直線與雙曲線左、右兩支各有一個(gè)交點(diǎn);當(dāng)直線斜率為3時(shí),直線與雙曲線右支有兩個(gè)不同的交點(diǎn),則雙曲線離心率的取值范圍為(
A.(1,
B.(1,
C.(
D.( ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=exsinx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)如果對(duì)于任意的 ,f(x)≥kx恒成立,求實(shí)數(shù)k的取值范圍;
(3)設(shè)函數(shù)F(x)=f(x)+excosx, ,過點(diǎn) 作函數(shù)F(x)的圖象的所有切線,令各切點(diǎn)的橫坐標(biāo)按從小到大構(gòu)成數(shù)列{xn},求數(shù)列{xn}的所有項(xiàng)之和的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)和直線,設(shè)圓的半徑為1,圓心在直線上.

(Ⅰ)若圓心也在直線上,過點(diǎn)作圓的切線.

(1)求圓的方程;(2)求切線的方程;

(Ⅱ)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是偶函數(shù).

(1)求實(shí)數(shù)的值;

(2)當(dāng)時(shí),函數(shù)存在零點(diǎn),求實(shí)數(shù)的取值范圍;

(3)設(shè)函數(shù),若函數(shù)的圖像只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)據(jù)顯示,某公司2018年上半年五個(gè)月的收入情況如下表所示:

月份

2

3

4

5

6

月收入(萬元)

1.4

2.56

5.31

11

21.3

根據(jù)上述數(shù)據(jù),在建立該公司2018年月收入(萬元)與月份的函數(shù)模型時(shí),給出兩個(gè)函數(shù)模型供選擇.

(1)你認(rèn)為哪個(gè)函數(shù)模型較好,并簡單說明理由;

(2)試用你認(rèn)為較好的函數(shù)模型,分析大約從第幾個(gè)月份開始,該公司的月收入會(huì)超過100萬元?(參考數(shù)據(jù),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】美國對(duì)中國芯片的技術(shù)封鎖,這卻激發(fā)了中國“芯”的研究熱潮.某公司研發(fā)的兩種芯片都已經(jīng)獲得成功.該公司研發(fā)芯片已經(jīng)耗費(fèi)資金千萬元,現(xiàn)在準(zhǔn)備投入資金進(jìn)行生產(chǎn).經(jīng)市場(chǎng)調(diào)查與預(yù)測(cè),生產(chǎn)芯片的毛收入與投入的資金成正比,已知每投入千萬元,公司獲得毛收入千萬元;生產(chǎn)芯片的毛收入(千萬元)與投入的資金(千萬元)的函數(shù)關(guān)系為,其圖像如圖所示.

(1)試分別求出生產(chǎn)兩種芯片的毛收入(千萬元)與投入資金(千萬元)的函數(shù)關(guān)系式;

(2)如果公司只生產(chǎn)一種芯片,生產(chǎn)哪種芯片毛收入更大?

(3)現(xiàn)在公司準(zhǔn)備投入億元資金同時(shí)生產(chǎn)兩種芯片,設(shè)投入千萬元生產(chǎn)芯片,用表示公司所過利潤,當(dāng)為多少時(shí),可以獲得最大利潤?并求最大利潤.(利潤芯片毛收入芯片毛收入研發(fā)耗費(fèi)資金)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),對(duì)于任意的 ,都有, 當(dāng)時(shí),,且.

( I ) 求的值;

(II) 當(dāng)時(shí),求函數(shù)的最大值和最小值;

(III) 設(shè)函數(shù),判斷函數(shù)g(x)最多有幾個(gè)零點(diǎn),并求出此時(shí)實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案