【題目】某市舉行“中學(xué)生詩詞大賽”,分初賽和復(fù)賽兩個階段進行,規(guī)定:初賽成績大于90分的具有復(fù)賽資格,某校有800名學(xué)生參加了初賽,所有學(xué)生的成績均在區(qū)間內(nèi),其頻率分布直方圖如圖.則獲得復(fù)賽資格的人數(shù)為( )
A. 520 B. 540 C. 620 D. 640
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在區(qū)間D上的函數(shù)f(x)和g(x),如果對任意x∈D,都有|f(x)﹣g(x)|≤1成立,則稱f(x)在區(qū)間D上可被g(x)替代,D稱為“替代區(qū)間”.給出以下問題:
①f(x)=x2+1在區(qū)間(﹣∞,+∞)上可被g(x)=x2+ 替代;
②如果f(x)=lnx在區(qū)間[1,e]可被g(x)=x﹣b替代,則﹣2≤b≤2;
③設(shè)f(x)=lg(ax2+x)(x∈D1),g(x)=sinx(x∈D1),則存在實數(shù)a(a≠0)及區(qū)間D1 , D2 , 使得f(x)在區(qū)間D1∩D2上被g(x)替代.
其中真命題是( )
A.①②③
B.②③
C.①
D.①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,平面平面,且.
(1)求證:平面;
(2)求和平面所成角的正弦值;
(3)在線段上是否存在一點使得平面平面,若存在,求出的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體ABCD﹣A1B1C1D1的棱長為1,點P是線段A1C1上的動點,則四棱錐P﹣ABCD的外接球半徑R的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市準備引進優(yōu)秀企業(yè)進行城市建設(shè). 城市的甲地、乙地分別對5個企業(yè)(共10個企業(yè))進行綜合評估,得分情況如莖葉圖所示.
(Ⅰ)根據(jù)莖葉圖,求乙地對企業(yè)評估得分的平均值和方差;
(Ⅱ)規(guī)定得分在85分以上為優(yōu)秀企業(yè). 若從甲、乙兩地準備引進的優(yōu)秀企業(yè)中各隨機選取1個,求這兩個企業(yè)得分的差的絕對值不超過5分的概率.
注:方差
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地電影院為了了解當?shù)赜懊詫煲嫌车囊徊侩娪暗钠眱r的看法,進行了一次調(diào)研,得到了票價x(單位:元)與渴望觀影人數(shù)y(單位:萬人)的結(jié)果如下表:
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(2)根據(jù)(1)中求出的線性回歸方程,若票價定為70元,預(yù)測該電影院渴望觀影人數(shù).附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.
(1) 經(jīng)計算估計這組數(shù)據(jù)的中位數(shù);
(2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機抽取個,再從這個中隨機抽取個,求這個芒果中恰有個在內(nèi)的概率.
(3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有個,經(jīng)銷商提出如下兩種收購方案:
A:所以芒果以元/千克收購;
B:對質(zhì)量低于克的芒果以元/個收購,高于或等于克的以元/個收購.
通過計算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}的前n項和為Sn , a1=1,an+1=2Sn+1(n∈N*),等差數(shù)列{bn}滿足b3=3,b5=9.
(1)分別求數(shù)列{an},{bn}的通項公式;
(2)設(shè)Cn= (n∈N*),求證Cn+1<Cn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com