1.設(shè)i是虛數(shù)單位,則-1+i-i2+i3-i4+…-i20=(  )
A.1B.0C.-1D.i

分析 利用等比數(shù)列的前n項(xiàng)和公式、復(fù)數(shù)的周期性即可得出.

解答 解:-1+i-i2+i3-i4+…-i20=$\frac{-[1-(-i)^{20}]}{1-(-i)}$=$\frac{-(1-1)}{1+i}$=0,
故選:B.

點(diǎn)評(píng) 本題考查了等比數(shù)列的前n項(xiàng)和公式、復(fù)數(shù)的周期性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知集合A={x|x2-2x-3=0},集合B={-1,0,1,2,3},且集合M滿足A⊆M⊆B,則M的個(gè)數(shù)為( 。
A.32B.16C.8D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.執(zhí)行如圖所示的程序框圖,若輸入n的值為5,則輸出的s的值為11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.以F1(0,-1),F(xiàn)2(0,1)為焦點(diǎn)的橢圓C過點(diǎn)P($\frac{\sqrt{2}}{2}$,1),則橢圓C的方程為$\frac{{y}^{2}}{2}+{x}^{2}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知圓O:x2+y2=4,直線l:mx+y-m-$\sqrt{3}$=0.
(1)直線l恒過定點(diǎn)P,求點(diǎn)P的坐標(biāo)及原點(diǎn)O到直線l的距離的最大值.
(2)當(dāng)m=$\sqrt{3}$時(shí),判斷直線l與圓O是否相交?若相交,求相交弦的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)f(x)=(x-$\frac{1}{x}$)cosx(-π≤x≤π且x≠0)的圖象可能為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知f(x)為R上的可導(dǎo)函數(shù),對(duì)任意的x0∈R,有0<f′(x+x0)-f′(x0)<4x,x>0.
(1)對(duì)任意的x0∈R,證明:$f'({x_0})<\frac{{f({x+{x_0}})-f({x_0})}}{x}$(x>0);
(2)若|f(x)|≤1,x∈R,證明|f′(x)|≤4,x∈R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)是(-∞,+∞)上的奇函數(shù),且f(x)的圖象關(guān)于x=1對(duì)稱,當(dāng)x∈[0,1]時(shí),f(x)=2x-1,
(1)當(dāng)x∈[1,2]時(shí),求f(x)的解析式;
(2)計(jì)算f(0)+f(1)+f(2)+…+f(2015)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知某等差數(shù)列共20項(xiàng),其所有項(xiàng)和為75,偶數(shù)項(xiàng)和25,則公差為( 。
A.5B.-5C.-2.5D.2.5

查看答案和解析>>

同步練習(xí)冊(cè)答案