設(shè)凼數(shù)f(x)=ax(a>0,a≠1),如果f(x1+x2+…+x2013)=8,那么f(2x1)•f(2x2)…f(2x2013)的值等于( 。
A、32B、64C、16D、8
考點(diǎn):指數(shù)函數(shù)的圖像與性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由條件可得ax1ax2ax2013=8,把要求的式子利用指數(shù)的運(yùn)算性質(zhì)化為(ax1ax2ax20132,從而求得結(jié)果.
解答: 解:由凼數(shù)f(x)=ax(a>0,a≠1),
且f(x1+x2+…+x2013)=8,
ax1+x2+…+x2013=8,
即有ax1ax2ax2013=8,
則有f(2x1)•f(2x2)…f(2x2013)=a2x1a2x2a2x2013
=(ax1ax2ax20132=82=64.
故選:B.
點(diǎn)評(píng):本題主要考查指數(shù)的運(yùn)算性質(zhì)的應(yīng)用,求函數(shù)的值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓和雙曲線右公共焦點(diǎn)F1、F2,P是它們的一個(gè)公共點(diǎn),且∠F1PF2=
π
3
,若雙曲線的離心率為
3
,則橢圓的離心率為( 。
A、
3
3
B、
3
2
C、
1
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

4張獎(jiǎng)券中只有1張能中獎(jiǎng),現(xiàn)分別由4名同學(xué)無放回地抽。粢阎谝幻瑢W(xué)沒有抽到中獎(jiǎng)券,則第二名同學(xué)抽到中獎(jiǎng)券的概率是( 。
A、
1
4
B、
1
3
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一商場(chǎng)為了做廣告,在廣場(chǎng)上升起了一廣告氣球,其直徑為4m,當(dāng)人們仰望氣球中心的仰角為60°時(shí),測(cè)得氣球的視角為2°(當(dāng)a很小時(shí),可取sinα=a,π=3.14),則該氣球的中心到地面的距離約為 (  )
A、99mB、95m
C、90mD、89m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠對(duì)某產(chǎn)品的產(chǎn)量與成本的資料分析后有如下數(shù)據(jù):
產(chǎn)量x(千件)2356
成本y(萬元)78912
(1)求成本y與產(chǎn)量x之間的線性回歸方程(結(jié)果保留兩位小數(shù));
(2)試估計(jì)產(chǎn)品產(chǎn)量達(dá)到一萬件時(shí)所花費(fèi)的成本費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,Sn是其前n項(xiàng)和,a1=2,S3=12.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an+4n,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求與C1:x2+y2=1,C2:(x-4)2+y2=9相切的圓的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,定義:一條直線經(jīng)過一個(gè)點(diǎn)(x,y),若x,y都是整數(shù),就稱該直線為完美直線,這個(gè)點(diǎn)叫直線的完美點(diǎn),若一條直線上沒有完美點(diǎn),則就稱它為遺憾直線.現(xiàn)有如下幾個(gè)命題:
①如果k與b都是無理數(shù),則直線y=kx+b一定是遺憾直線;
②“直線y=kx+b是完美直線”的充要條件是“k與b都是有理數(shù)”;
③存在恰有一個(gè)完美點(diǎn)的完美直線;
④完美直線l經(jīng)過無窮多個(gè)完美點(diǎn),當(dāng)且僅當(dāng)直線l經(jīng)過兩個(gè)不同的完美點(diǎn).
其中正確的命題是
 
.(寫出所有正確命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+(1-b)x2-a(b-3)x+b-2的圖象過原點(diǎn),且在原點(diǎn)處的切線斜率是-3,則不等式組
x-ay≥0
x-by≥0
所確定的平面區(qū)域在x2+y2=4內(nèi)的面積為( 。
A、
π
3
B、
π
2
C、π
D、2π

查看答案和解析>>

同步練習(xí)冊(cè)答案