6.已知某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.2B.4C.$\frac{8}{3}$D.$\frac{4}{3}$

分析 幾何體為四棱柱切去一個(gè)三棱錐得到的,作出幾何體的直觀圖,使用作差法求出體積.

解答 解:由三視圖可知幾何體為直四棱柱ABCD-PGFE切去一個(gè)三棱錐G-PBE得到的,
其中棱柱的底面ABCD為直角梯形,AD∥BC,CD⊥BC,AD=AP=2,BC=CD=1,
∴四棱柱的體積為$\frac{1}{2}$×(1+2)×1×2=3,三棱錐的體積為$\frac{1}{3}×\frac{1}{2}×1×2×1$=$\frac{1}{3}$.
∴幾何體的體積為3-$\frac{1}{3}$=$\frac{8}{3}$.
故選C.

點(diǎn)評(píng) 本題考查了空間幾何體的三視圖,結(jié)構(gòu)特征和體積計(jì)算,作出直觀圖可方便計(jì)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為A,過點(diǎn)A與AF2垂直的直線交x軸負(fù)半軸于點(diǎn)Q,且2$\overrightarrow{{F}_{1}{F}_{2}}$+$\overrightarrow{{F}_{2}Q}$=$\overrightarrow{0}$.若過A、Q、F2三點(diǎn)的圓恰好與直線1:x-$\sqrt{3}$y-3=0相切.
(1)求橢圓C的方程;
(2)設(shè)橢圓的右頂點(diǎn)為B,過橢圓右焦點(diǎn)F2作斜率為k的直線1與橢圓C交于M、N兩點(diǎn).當(dāng)△MBN的面積為$\frac{6\sqrt{2}}{7}$時(shí),求直線1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知數(shù)列{$\frac{{a}_{n}}{n+2}$}為等比數(shù)列,且a2=16,a3=40,則數(shù)列{$\frac{{4}^{n}}{{a}_{n}{a}_{n+1}}$}的前60項(xiàng)和為$\frac{10}{63}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在正方體ABCD-A1B1C1D1中,AA1與C1D1所成的角為90°;AA1與B1C所成的角為45°;B1C與BD所成的角為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知tanα=2,求下列各式的值.
(1)$\frac{2sinα-3cosα}{4sinα-9cosα}$;
(2)2sin2α-sinαcosα+cos2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,過O作直線AB的垂線,垂足為P,若|$\overrightarrow{a}$|=3,|$\overrightarrow$|=$\sqrt{3}$,∠AOB=$\frac{π}{6}$,$\overrightarrow{OP}$=x$\overrightarrow{a}$+y
$\overrightarrow$,則x-y=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知數(shù)列{an}中,a1=1,an+1+an=-2n,求:an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)函數(shù)f(x)=x-$\frac{1}{x}$-a1nx.
(1)當(dāng)a=1時(shí).求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程:
(2)若函數(shù)f(x)在定義域上為增函數(shù),求實(shí)數(shù)a的取值范圍:
(3)在(2)的條件下,若函數(shù)h(x)=x-lnx-$\frac{1}{e}$,?x1,x2∈[1,e]使得f(x1)≥h(x2)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.有4名男生、5名女生,全體排成一行,問下列情形各有多少種不同的排法?
(1)一共有多少種排法?
(2)甲不在中間;
(3)甲、乙兩人必須排在兩端;
(4)男女相間.

查看答案和解析>>

同步練習(xí)冊(cè)答案