1.已知tanα=2,求下列各式的值.
(1)$\frac{2sinα-3cosα}{4sinα-9cosα}$;
(2)2sin2α-sinαcosα+cos2α.

分析 由條件利用同角三角函數(shù)的基本關(guān)系,求得要求式子的值.

解答 解:(1)∵tanα=2,∴$\frac{2sinα-3cosα}{4sinα-9cosα}$=$\frac{2tanα-3}{4tanα-9}$=$\frac{4-3}{8-9}$=-1.
(2)2sin2α-sinαcosα+cos2α=$\frac{{2sin}^{2}α-sinαcosα{+cos}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{{2tan}^{2}α-tanα+1}{{tan}^{2}α+1}$=$\frac{4-2+1}{4+1}$=$\frac{3}{5}$.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.己知四棱錐P一ABCD,底面ABCD是矩形,PA⊥底面ABCD,且PA=AD,M、N分別AB、PC的中點.
(1)求證平面MND⊥平面PCD;
(2)若PA=AD=2,AB=1,求直線MD與平面PCD所成角的大;
(3)在(2)的條件下,求直線MD與直線PB所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點分別為F1(-c,0)、F2(c,0),過點F2且斜率為$\frac{2b}{a}$的直線l交直線2bx+ay=0于M,若M在以線段F1F2為直徑的圓上,則橢圓的離心率為( 。
A.$\frac{1}{3}$B.$\frac{\sqrt{2}}{3}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.若等差數(shù)列{an}中,已知a2+a6=16,s6=39,求d,an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.空間四邊形OABC中,OB=OC,∠AOB=∠AOC=$\frac{π}{3}$,則cos<$\overrightarrow{OA}$,$\overrightarrow{BC}$>的值是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.-$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.2B.4C.$\frac{8}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.化簡:$\frac{sin8°-sin15°cos7°}{cos15°sin7°}$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在x軸上與點A(4,-1,7),B(-3,5,-2)等距離的點的坐標為(2,0,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)等比數(shù)列{an}的前n項和為Sn,若S7=S9=2,則a8等于( 。
A.-2B.-1C.1D.2

查看答案和解析>>

同步練習冊答案