5.求函數(shù)的值域:y=2sin($\frac{x}{2}$-$\frac{π}{6}$)+1,x∈[-π,π].

分析 由x∈[-π,π],確定$\frac{1}{2}$x-$\frac{π}{6}$的范圍,從而可得-1≤sin($\frac{x}{2}$-$\frac{π}{6}$)≤$\frac{\sqrt{3}}{2}$,即可得到函數(shù)的定義域.

解答 解:∵x∈[-π,π],
∴$\frac{x}{2}$-$\frac{π}{6}$∈[-$\frac{2π}{3}$,$\frac{π}{3}$],
∴-1≤sin($\frac{x}{2}$-$\frac{π}{6}$)≤$\frac{\sqrt{3}}{2}$,
∴-1≤2sin($\frac{x}{2}$-$\frac{π}{6}$)+1≤$\sqrt{3}$+1,
∴函數(shù)的定義域是[-1,$\sqrt{3}$+1].

點(diǎn)評 本題考查三角函數(shù)的求值,考查學(xué)生的計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知焦點(diǎn)在y軸上的橢圓E的中心是原點(diǎn)O,離心率等于$\frac{\sqrt{3}}{2}$,以橢圓E的長軸和短軸為對角線的四邊形的周長為4$\sqrt{5}$,直線l:y=kx+m與y軸交于點(diǎn)P,與橢圓E交于A、B兩個相異點(diǎn),且$\overrightarrow{AP}$=λ$\overrightarrow{PB}$.
(I)求橢圓E的方程;
(Ⅱ)是否存在m,使$\overrightarrow{OA}$+λ$\overrightarrow{OB}$=4$\overrightarrow{OP}$?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.i為虛數(shù)單位,則復(fù)數(shù)$\frac{1}{{3i}^{3}+{4i}^{4}+{5i}^{5}+{6I}^{6}}$的虛部為(  )
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.-$\frac{1}{4}$iD.$\frac{1}{4}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.等差數(shù)列{an}中,a3-a7=-12,a4+a6=-4,求它的前10項(xiàng)和S10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知a,b是實(shí)數(shù),b>0,函數(shù)f(x)=1+asinbx的圖象如圖所示,則符合條件的函數(shù)y=loga(x+b)的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知θ是第二象限的角,且cos(78°-θ)=$\frac{5}{13}$,則sin(102°+θ)=$-\frac{12}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.以橢圓$\frac{x^2}{4}+\frac{y^2}{2}$=1的焦距為實(shí)軸,短軸為虛軸的雙曲線方程為( 。
A.x2-4y2=2B.x2-y2=2C.x2-2y2=1D.2x2-y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知平面向量$\overrightarrow a$與$\overrightarrow b$的夾角為60°,$\overrightarrow a=(2,0)$,$|{\overrightarrow b}$|=1,則$|{\overrightarrow a+2\overrightarrow b}$|=2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)集合A={x|1<x<2},B={x|x≤a},若A⊆B,則a的取值范圍是( 。
A.a≥2B.a>2C.a≥1D.a>1

查看答案和解析>>

同步練習(xí)冊答案