14.設(shè)可導(dǎo)函數(shù)y=f(x)經(jīng)過n(n∈N)次求導(dǎo)后所得結(jié)果為y=f(n)(x).如果函數(shù)g(x)=x3經(jīng)過1次求導(dǎo)后所得結(jié)果為g(1)(x)=3x2.經(jīng)過2次求導(dǎo)后所得結(jié)果為g(2)(x)=6x,….
(1)若f(x)=ln(2x+1),求f(2)(x).
(2)已知f(x)=p(x)•q(x),其中p(x)•q(x)為R上的可導(dǎo)函數(shù).求證:f(n)(x)=$\sum_{i=0}^{n}$${C}_{n}^{i}$p(n-i)(x)•q(i)(x).

分析 (1)利用對(duì)數(shù)以及分式的求導(dǎo)法則解答;
(2)對(duì)f(x)分別求2次,3次,4次…導(dǎo)數(shù),發(fā)現(xiàn)規(guī)律,得到證明.

解答 解:(1)若f(x)=ln(2x+1),
則f(1)(x)=$\frac{1}{2x+1}$•(2x+1)′=$\frac{2}{2x+1}$.
f(2)(x)=-$\frac{2}{(2x+1)^{2}}$•(2x+1)′=-$\frac{4}{(2x+1)^{2}}$.
(2)證明:f(x)=p(x)•q(x),所以f'(x)=f(x)=p'(x)•q(x)+p(x)•q'(x),
f(2)(x)=[p'(x)•q(x)+p(x)•q'(x)]=p(2)q+p'q'+p'q'+pq(2)=p(2)q+2p'q'+pq(2)
f(3)=[p(2)q+2p'q'+pq(2)]'=p(3)q+p(2)q'+2p(2)q'+2p'q(2)+p'q(2)+pq(3)=p(3)q+3p(2)q'+3p'q(2)+pq(3),

所以f(n)(x)=$\sum_{i=0}^{n}$${C}_{n}^{i}$p(n-i)(x)•q(i)(x).

點(diǎn)評(píng) 本題考查了函數(shù)求導(dǎo);熟練運(yùn)用初等函數(shù)的求導(dǎo)公式以及法則是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右頂點(diǎn)分別為A1、A2,上、下頂點(diǎn)分別為B2、B1,O為坐標(biāo)原點(diǎn),四邊形A1B1A2B2的面積為4,且該四邊形內(nèi)切圓的方程為x2+y2=$\frac{4}{5}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若M、N是橢圓C上的兩個(gè)不同的動(dòng)點(diǎn),直線OM、ON的斜率之積等于-$\frac{1}{4}$,試探求△OMN的面積是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列說法正確的有(  )
(1){an}和{bn}都是等差數(shù)列,則{an+bn}為等差數(shù)列
(2){an}是等差數(shù)列,則am,am+k,am+2k,am+3k,…(k,m∈N+)為等差數(shù)列
(3)若{an}為等比數(shù)列,其中an>0,則{lgan}為等差數(shù)列;若{an}為等差數(shù)列,則$\{{2^{a_n}}\}$為等比數(shù)列.
(4)若{an}為等比數(shù)列,則$\{a_n^2\}$,{|an|}都為等比數(shù)列.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,角A、B、C的對(duì)邊分別為a,b,c,角A,B,C成等差數(shù)列.
(Ⅰ)求cosB的值; 
(Ⅱ)邊b2=ac,求sinAsinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=-t\\ y=\sqrt{3}t\end{array}\right.$(t為參數(shù),-1≤t≤1),當(dāng)t=1時(shí),曲線C1上的點(diǎn)為A,當(dāng)t=-1時(shí),曲線C1上的點(diǎn)為B,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.曲線C2的極坐標(biāo)方程$ρ=\frac{6}{{\sqrt{4+5{{sin}^2}θ}}}$
(Ⅰ) 求線段AB的極坐標(biāo)方程;C2的參數(shù)方程
(Ⅱ) 設(shè)M是曲線C2上的動(dòng)點(diǎn),求|MA|2+|MB|2最大值及取最大值時(shí)點(diǎn)M的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知拋物線C:y2=4x的焦點(diǎn)為F,點(diǎn)P(2,t)為拋物線C上一點(diǎn),則|PF|=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知$a=\frac{1}>1$,如果方程ax=logbx,bx=logax,bx=logbx的根分別為x1,x2,x3,則x1,x2,x3的大小關(guān)系為( 。
A.x3<x1<x2B.x3<x2<x1C.x1<x3<x2D.x1<x2<x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}的首項(xiàng)a1=2,前n項(xiàng)和為Sn,$3{S_n}-4,{a_n},2-\frac{{3{S_{n-1}}}}{2},(n≥2)$總是成等差數(shù)列.
(1)證明數(shù)列{an}為等比數(shù)列;
(2)求滿足不等式${a_n}<{(-4)^{n-1}}$的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ex-ex-1,其中e為自然對(duì)數(shù)的底數(shù).函數(shù)g(x)=(2-e)x.
(1)求函數(shù)h(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)若函數(shù)$F(x)=\left\{\begin{array}{l}f(x),x≤m\\ g(x),x>m\end{array}\right.$的值域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案