【題目】數(shù)列滿足,是數(shù)列的前項和().

(1)設(shè)數(shù)列是首項和公比都為的等比數(shù)列,且數(shù)列也是等比數(shù)列,求的值;

(2)設(shè),若恒成立,求的取值范圍;

(3)設(shè),,,),若存在整數(shù),,且,使得成立,求的所有可能值.

【答案】1

2

3

【解析】

1)直接利用等比數(shù)列的定義和等比中項的應(yīng)用求出結(jié)果.

2)利用累加法和恒成立問題的應(yīng)用和賦值法的應(yīng)用求出結(jié)果.

3)利用存在性問題的應(yīng)用和賦值法的應(yīng)用求出結(jié)果.

解:(1) 由條件得,,即,

,設(shè)等比數(shù)列的公比為

,又,則.

當(dāng),時,,

滿足題意,

故所求的的值為.

(2)當(dāng)時,,,,

以上個式子相加得,,

,則,

. 由知數(shù)列是遞增數(shù)列,

,要使得恒成立,

則只需,即,則.

(3) 由條件得數(shù)列是以為首項,為公差的等差數(shù)列,

,

.

當(dāng)時,

時,,

則當(dāng)時,矛盾.

,即時,.

當(dāng)時,

,

即當(dāng),時,,與矛盾.

,則,

當(dāng)時,,解得

當(dāng)時,,解得.

綜上得的所有可能值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行六面體ABCDA1B1C1D1中,AA1⊥平面ABCD,且ABAD=2,AA1,∠BAD=120°.

(1)求異面直線A1BAC1所成角的余弦值;

(2)求二面角BA1DA的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正三棱柱ABC-A1B1C1中,AB=AA1=2,點(diǎn)PQ分別為A1B1,BC的中點(diǎn).

(1)求異面直線BPAC1所成角的余弦值;

(2)求直線CC1與平面AQC1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為2的正方體ABCDA1B1C1D1中,P為棱C1D1的中點(diǎn),Q為棱BB1上的點(diǎn),且BQλBB1(λ≠0)

1)若λ,求APAQ所成角的余弦值;

2)若直線AA1與平面APQ所成的角為45°,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線和圓,拋物線的焦點(diǎn)為.

1)求的圓心到的準(zhǔn)線的距離;

2)若點(diǎn)在拋物線上,且滿足 過點(diǎn)作圓的兩條切線,記切點(diǎn)為,求四邊形的面積的取值范圍;

3)如圖,若直線與拋物線和圓依次交于四點(diǎn),證明:的充要條件是直線的方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若的圖象與直線交于,兩點(diǎn),且,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)家祖暅提出原理:“冪勢既同,則積不容異”.其中“冪”是截面積,“勢”是幾何體的高.原理的意思是:夾在兩個平行平面間的兩個幾何體,被任一平行于這兩個平行平面的平面所截,若所截的兩個截面的面積恒相等,則這兩個幾何體的體積相等.如圖(1),函數(shù)的圖象與x軸圍成一個封閉區(qū)域A(陰影部分),將區(qū)域A(陰影部分)沿z軸的正方向上移6個單位,得到一幾何體.現(xiàn)有一個與之等高的底面為橢圓的柱體如圖(2)所示,其底面積與區(qū)域A(陰影部分)的面積相等,則此柱體的體積為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(Ⅰ) 求曲線在點(diǎn)處的切線方程;

(Ⅱ) 討論函數(shù)的單調(diào)性;

(Ⅲ) 設(shè),當(dāng)時,若對任意的,存在,使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】古希臘數(shù)學(xué)家阿波羅尼奧斯在他的著作《圓錐曲線論》中記載了用平面切制圓錐得到圓錐曲線的方法.如圖,將兩個完全相同的圓錐對頂放置(兩圓錐的軸重合),已知兩個圓錐的底面半徑為1,母線長均為,記過圓錐軸的平面ABCD為平面與兩個圓錐面的交線為AC、BD),用平行于的平面截圓錐,該平面與兩個圓錐側(cè)面的截線即為雙曲線E的一部分,且雙曲線E的兩條漸近線分別平行于AC、BD,則雙曲線E的離心率為(

A.B.C.D.2

查看答案和解析>>

同步練習(xí)冊答案