11.已知SC是三棱錐S-ABC外接球直徑,SC=2,AB=BC=AC=1,則三棱錐體積為多少.

分析 根據(jù)題意作出圖形,利用截面圓的性質(zhì)即可求出OO1,進(jìn)而求出底面ABC上的高SD,即可計(jì)算出三棱錐的體積.

解答 解:根據(jù)題意作出圖形:
設(shè)球心為O,過(guò)ABC三點(diǎn)的小圓的圓心為O1,則OO1⊥平面ABC,
延長(zhǎng)CO1交球于點(diǎn)D,則SD⊥平面ABC.
∵CO1=$\frac{2}{3}×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{3}$,
∴OO1=$\sqrt{{1}^{2}-(\frac{\sqrt{3}}{3})^{2}}$=$\frac{\sqrt{6}}{3}$,
∴高SD=2OO1=$\frac{2\sqrt{6}}{3}$,
∵△ABC是邊長(zhǎng)為1的正三角形,
∴S△ABC=$\frac{\sqrt{3}}{4}$,
∴V三棱錐S-ABC=$\frac{1}{3}×\frac{\sqrt{3}}{4}×\frac{2\sqrt{6}}{3}$=$\frac{\sqrt{2}}{6}$.

點(diǎn)評(píng) 本題考查三棱錐體積,考查學(xué)生的計(jì)算能力,利用截面圓的性質(zhì)求出OO1是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.過(guò)點(diǎn)A(4,y),B(2,-3)的直線的傾斜角為135°,則y等于( 。
A.1B.-1C.5D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.某幾何體的三視圖如圖所示,則其表面積為( 。
A.$\frac{\sqrt{5}π}{2}$+2B.$\frac{\sqrt{5}+1}{2}π+\sqrt{3}$C.$\frac{\sqrt{5}π}{2}+\sqrt{3}$D.$\frac{\sqrt{5}+1}{2}π+2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{1-si{n}^{2}(\frac{π}{3}-2x)}{cos(2x-\frac{π}{3})}$•$\frac{3}{tan(2x+\frac{7π}{6})}$.
(1)求函數(shù)f(x)的最小正周期及值域;
(2)求當(dāng)x∈[-$\frac{π}{2}$,$\frac{π}{2}$]時(shí),函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)$\frac{3}{2}$π<α<2π,則$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos2α}}$=(  )
A.-cos$\frac{α}{2}$B.cos$\frac{α}{2}$C.sin$\frac{α}{2}$D.-sin$\frac{α}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,PA⊥底面ABCD,M是棱PD的中點(diǎn),且PA=AB=AC=2,BC=2$\sqrt{2}$. 
(1)求證:CD⊥平面PAC;
(2)如果N是棱AB上一點(diǎn),若VN-PBC:VN-AMC=3:2,求$\frac{AN}{NB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x≥1}\\{y≥x}\\{3x+2y≤15}\end{array}\right.$,則z=7x+2y的最大值是27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知在△ABC中,角A、B、C成公差大于0的等差數(shù)列,且滿足條件:1-cos2A-cos2C+cos2Acos2C=$\frac{4+2\sqrt{3}}{4}$,則$\frac{a+\sqrt{2}b}{c}$的值為( 。
A.$\frac{\sqrt{6}+1}{2}$B.$\frac{\sqrt{6}+\sqrt{2}}{4}$C.$\frac{2+\sqrt{3}}{4}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在△ABC中,若(2a-c)tanC=ctanB,求B.

查看答案和解析>>

同步練習(xí)冊(cè)答案