【題目】已知數(shù)列的前項和為,點在函數(shù)圖像上;
(1)證明是等差數(shù)列;
(2)若函數(shù),數(shù)列滿足,記,求數(shù)列前項和;
(3)是否存在實數(shù),使得當時, 對任意恒成立?若存在,求出最大的實數(shù),若不存在,說明理由.
【答案】(1)詳見解析;(2) ;(3) .
【解析】試題分析:(1)由點在函數(shù)上可得,利用公式即可得結果;(2),結合(1)可得,利用錯位相減法可得結果;(3)對任意恒成立,
等價于任意恒成立,求出的最小項 ,令,解不等式即可的結果.
試題解析:(1)由題意, ,當時, ,
時, ,
當時, ,也適合上式
數(shù)列的通項公式為, ; 是等差數(shù)列.
(2)函數(shù),
數(shù)列滿足,
又,
,···①
,···②
①-②得:
,
.
(3)假設存在實數(shù),使得當時, 對任意恒成立,
即任意恒成立,
, 是遞增數(shù)列,
所以只要,即,解得或.
所以存在最大的實數(shù),使得當時, 對任意恒成立.
科目:高中數(shù)學 來源: 題型:
【題目】某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為,當年產(chǎn)量不足80千件時, (萬元).當年產(chǎn)量不小于80千件時, (萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(Ⅰ)寫出年利潤(萬元)關于年產(chǎn)量(千件)的函數(shù)解析式;
(Ⅱ)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖:在四棱錐中,底面是菱形, , 平面,點為的中點,且.
(1)證明: 面;
(2)求三棱錐的體積;
(3)在線段上是否存在一點,使得平面;若存在,求出的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我市兩所高中分別組織部分學生參加了“七五普法網(wǎng)絡知識大賽”,現(xiàn)從這兩所學校的參賽學生中分別隨機抽取30名學生的成績(百分制)作為樣本,得到樣本數(shù)據(jù)的莖葉圖如圖所示.
(Ⅰ)若乙校每位學生被抽取的概率為0.15,求乙校參賽學生總?cè)藬?shù);
(Ⅱ)根據(jù)莖葉圖,從平均水平與波動情況兩個方面分析甲、乙兩校參賽學生成績(不要求計算);
(Ⅲ)從樣本成績低于60分的學生中隨機抽取3人,求3人不在同一學校的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某研究所計劃利用“神七”宇宙飛船進行新產(chǎn)品搭載實驗,計劃搭載新產(chǎn)品、,該所要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實驗費用、和預計產(chǎn)生收益來決定具體安排.通過調(diào)查,有關數(shù)據(jù)如下表:
產(chǎn)品A(件) | 產(chǎn)品B(件) | ||
研制成本、搭載費用之和(萬元) | 20 | 30 | 計劃最大資金額300萬元 |
產(chǎn)品重量(千克) | 10 | 5 | 最大搭載重量110千克 |
預計收益(萬元) | 80 | 60 |
如何安排這兩種產(chǎn)品的件數(shù)進行搭載,才能使總預計收益達到最大,最大收益是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x2﹣1)=loga (a>0且a≠1)
(1)求函數(shù)f(x)的解析式,并判斷f(x)的奇偶性;
(2)解關于x的方程f(x)=loga .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com