A. | $\frac{1}{3}$ | B. | $\frac{1}{8}$ | C. | $\frac{2}{3}$ | D. | $\frac{7}{8}$ |
分析 設送報人到達的時間為x,小明離家的時間為y,則(x,y)可以看成平面中的點,分析可得由試驗的全部結果所構成的區(qū)域并求出其面積,同理可得事件A所構成的區(qū)域及其面積,由幾何概型公式,計算可得答案.
解答 解:設送報人到達的時間為x,小明離家的時間為y,記小明離家前能看到報紙為事件A;
以橫坐標表示報紙送到時間,以縱坐標表示小明離家時間,建立平面直角坐標系,
小明離家前能得到報紙的事件構成區(qū)域如圖示:
由于隨機試驗落在方形區(qū)域內任何一點是等可能的,所以符合幾何概型的條件.
根據(jù)題意,只要點落到陰影部分,就表示小明在離開家前能得到報紙,即事件A發(fā)生,
所以P(A)=$\frac{1-\frac{1}{2}×\frac{1}{2}×\frac{1}{2}}{1}$=$\frac{7}{8}$,
故選:D.
點評 本題考查幾何概型的計算,解題的關鍵在于設出x、y,將(x,y)以及事件A在平面直角坐標系中表示出來,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 三人都抽到同一題的概率為$\frac{1}{4}$ | |
B. | 只有兩名女同學抽到同一題的概率為$\frac{1}{4}$ | |
C. | 其中恰有一男一女抽到同一道題的概率為$\frac{1}{2}$ | |
D. | 至少有兩名同學抽到同一題的概率為$\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ω=2,φ=$\frac{π}{2}$ | B. | ω=$\frac{1}{2}$,φ=$\frac{π}{2}$ | C. | ω=$\frac{1}{2}$,φ=$\frac{π}{4}$ | D. | ω=2,φ=$\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,$\frac{2\sqrt{3}}{3}$) | B. | ($\frac{2\sqrt{3}}{3}$,2) | C. | [$\frac{2\sqrt{3}}{3}$,2] | D. | (2,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com