A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | a>c>b |
分析 利用函數(shù)y=f(x-1)的圖象關(guān)于直線x=1對(duì)稱,可得函數(shù)y=f(x)的圖象關(guān)于y軸對(duì)稱,是偶函數(shù).令g(x)=xf(x),利用已知當(dāng)x∈(-∞,0)時(shí),g′(x)=f(x)+xf′(x)<0,可得函數(shù)g(x)在x∈(-∞,0)單調(diào)遞減,進(jìn)而得到函數(shù)g(x)在(0,+∞)上單調(diào)遞增.再根據(jù)log22=1>log32>log52>0.即可得到a,b,c的大。
解答 解:∵函數(shù)y=f(x-1)的圖象關(guān)于直線x=1對(duì)稱,
∴函數(shù)y=f(x)的圖象關(guān)于y軸對(duì)稱,是偶函數(shù).
令g(x)=xf(x),則g(x)為奇函數(shù),
則當(dāng)x∈(-∞,0)時(shí),g′(x)=f(x)+xf′(x)<0,
∴函數(shù)g(x)在x∈(-∞,0)單調(diào)遞減,
因此函數(shù)g(x)在(0,+∞)上單調(diào)遞減,
∵log22=1>log32>log52>0.
∴g(2)<g(log32)>g(log52),
∴c<a<b.
故選:B.
點(diǎn)評(píng) 熟練掌握軸對(duì)稱、奇偶函數(shù)的性質(zhì)、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、對(duì)數(shù)的運(yùn)算性質(zhì)等是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年江蘇泰興中學(xué)高二上學(xué)期期末數(shù)學(xué)(理)試卷(解析版) 題型:解答題
設(shè)分別是橢圓的左右焦點(diǎn),是上一點(diǎn),且與軸垂直,直線與的另一個(gè)交點(diǎn)為.
(1)若直線的斜率為,求的離心率;
(2)若直線在軸上的截距為2,且,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年廣東清遠(yuǎn)三中高一上學(xué)期月考一數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)為實(shí)數(shù)),設(shè)
(1)若 = 0且對(duì)任意實(shí)數(shù)均有成立,求表達(dá)式;
(2)在(1)的條件下,當(dāng)是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(3)設(shè)滿足,試比較的值與0的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com