【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2.
(Ⅰ)證明:不論t為何值,直線l與曲線C恒有兩個公共點;
(Ⅱ)以α為參數(shù),求直線l與曲線C相交所得弦AB的中點軌跡的參數(shù)方程,并判斷該軌跡的曲線類型.

【答案】證明:(Ⅰ)∵曲線C的極坐標(biāo)方程為ρ=2,∴曲線C的直角坐標(biāo)方程為x2+y2=4, 將 代入x2+y2=4,得t2+2tcosα﹣3=0,(*)
由△=(2cosα)2﹣4×(﹣3)>0,知方程(*)恒有兩個不等實根,
故不論t為何值,直線l與曲線C恒有兩個公共點.
解:(Ⅱ)設(shè)直線l與曲線交點A、B對應(yīng)的參數(shù)分別為t1 , t2 , 弦AB中點P對應(yīng)參數(shù)為t0 ,
由(*)知 =﹣cosα,
代入 中,整理,得弦AB的中點的軌跡方程為
(α為參數(shù)),該曲線為圓
【解析】(Ⅰ)由曲線C的極坐標(biāo)方程求出曲線C的直角坐標(biāo)方程為x2+y2=4,將 代入x2+y2=4,得t2+2tcosα﹣3=0,利用根的判別式能證明不論t為何值,直線l與曲線C恒有兩個公共點.(Ⅱ)設(shè)直線l與曲線交點A、B對應(yīng)的參數(shù)分別為t1 , t2 , 弦AB中點P對應(yīng)參數(shù)為t0 , 由中點坐標(biāo)公式求出 =﹣cosα,代入 中,能得到弦AB的中點的軌跡方程,由此能求出結(jié)果.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)為定義域上的單調(diào)函數(shù),且存在區(qū)間(其中,使得當(dāng)時,的取值范圍恰為,則稱函數(shù)上的正函數(shù),區(qū)間叫做函數(shù)的等域區(qū)間

(1)已知上的正函數(shù),求的等域區(qū)間;

(2)試探求是否存在,使得函數(shù)上的正函數(shù)?若存在,請求出實數(shù)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在(0,+∞)上的函數(shù)f(x)滿足f′(x)+2f(x)= ,且f(1)= ,則不等式f(lnx)>f(3)的解集為(
A.(﹣∞,e3
B.(0,e3
C.(1,e3
D.(e3 , +∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方形的對角線相交于點,將沿對角線折起,使得平面平面(如圖),則下列命題中正確的是( )

A. 直線直線,且直線直線

B. 直線平面,且直線平面

C. 平面平面,且平面平面

D. 平面平面,且平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: 的右焦點為F,不垂直x軸且不過F點的直線l與橢圓C相交于A,B兩點.
(Ⅰ)若直線l經(jīng)過點P(2,0),則直線FA、FB的斜率之和是否為定值?若是,求出該定值;若不是,請說明理由;
(Ⅱ)如果FA⊥FB,原點到直線l的距離為d,求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了月份每月號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期

1月10日

2月10日

3月10日

4月10日

5月10日

6月10日

晝夜溫差

就診人數(shù)(個)

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進行檢驗.

(1)求選取的組數(shù)據(jù)恰好是相鄰兩月的概率;

(2)若選取的是1月與月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出關(guān)于的線性回歸方程;

(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

參考數(shù)據(jù),

(參考公式: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .
(1)討論 的單調(diào)性;
(2)當(dāng) 時,證明: 對于任意的 成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱柱 ,側(cè)面 .
(Ⅰ)若 分別是 的中點,求證: ;
(Ⅱ)若三棱柱 的各棱長均為2,側(cè)棱 與底面 所成的角為 ,問在線段 上是否存在一點 ,使得平面 ?若存在,求 的比值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在統(tǒng)計學(xué)中,偏差是指個別測定值與測定的平均值之差,在成績統(tǒng)計中,我們把某個同學(xué)的某科考試成績與該科班平均分的差叫某科偏差,班主任為了了解個別學(xué)生的偏科情況,對學(xué)生數(shù)學(xué)偏差x(單位:分)與物理偏差y(單位:分)之間的關(guān)系進行學(xué)科偏差分析,決定從全班56位同學(xué)中隨機抽取一個容量為8的樣本進行分析,得到他們的兩科成績偏差數(shù)據(jù)如下:

學(xué)生序號

1

2

3

4

5

6

7

8

數(shù)學(xué)偏差x

20

15

13

3

2

-5

-10

-18

物理偏差y

6.5

3.5

3.5

1.5

0.5

-0.5

-2.5

-3.5

(1)已知xy之間具有線性相關(guān)關(guān)系,求y關(guān)于x的線性回歸方程;

(2)若這次考試該班數(shù)學(xué)平均分為118分,物理平均分為90.5,試預(yù)測數(shù)學(xué)成績126分的同學(xué)的物理成績.

參考公式: ,.

參考數(shù)據(jù): .

查看答案和解析>>

同步練習(xí)冊答案