【題目】已知直線l經(jīng)過點(diǎn).

1)若直線在兩坐標(biāo)軸上的截距相等,求直線的方程;

2)若兩點(diǎn)到直線的距離相等,求直線的方程.

【答案】(1)(2)

【解析】

1)討論直線是否過原點(diǎn),利用截距相等進(jìn)行求解即可.

2)根據(jù)點(diǎn)到直線的距離相等,分直線平行和直線過A,B的中點(diǎn)兩種情況進(jìn)行求解即可.

1)若直線過原點(diǎn),則設(shè)為ykx,則k2,此時直線方程為y2x

當(dāng)直線不過原點(diǎn),設(shè)方程為1,即x+ya,

此時a1+23,則方程為x+y3,

綜上直線方程為y2xx+y3

2)若AB兩點(diǎn)在直線l同側(cè),

ABl

AB的斜率k1,

l的斜率為1,

l的方程為y2x1,即yx+1,

AB兩點(diǎn)在直線的兩側(cè),即lAB的中點(diǎn)C2,0),

k2

l的方程為y0=﹣2x2),即y=﹣2x+4

綜上l的方程為y=﹣2x+4yx+1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(選修4﹣4:坐標(biāo)系與參數(shù)方程)
在直角坐標(biāo)系xOy中,橢圓C的參數(shù)方程為 為參數(shù),a>b>0).在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,直線l與圓O的極坐標(biāo)方程分別為 為非零常數(shù))與ρ=b.若直線l經(jīng)過橢圓C的焦點(diǎn),且與圓O相切,則橢圓C的離心率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電影院共有個座位.某天,這家電影院上、下午各演一場電影.看電影的是甲、乙、丙三所中學(xué)的學(xué)生,三所學(xué)校的觀影人數(shù)分別是985人, 1010人,2019人(同一所學(xué)校的學(xué)生有的看上午場,也有的看下午場,但每人只能看一-場).已知無論如何排座位,這天觀影時總存在這樣的一個座位,上、 下午在這個座位上坐的是同一所學(xué)校的學(xué)生,那么的可能取值有( )

A. 12個 B. 11個 C. 10個 D. 前三個答案都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列五個正方體圖形中,是正方體的一條對角線,點(diǎn)M,NP分別為其所在棱的中點(diǎn),求能得出MNP的圖形的序號(寫出所有符合要求的圖形序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)和向量

(1)若向量與向量同向,且,求點(diǎn)的坐標(biāo);

(2)若向量與向量的夾角是鈍角,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)x∈R,|x|<1時,有如下表達(dá)式:1+x+x2+…+xn+…=
兩邊同時積分得: dx+ xdx+ x2dx+…+ xndx+…= dx
從而得到如下等式:1× + ×( 2+ ×( 3+…+ ×( n+1+…=ln2
請根據(jù)以上材料所蘊(yùn)含的數(shù)學(xué)思想方法,計(jì)算:
× + ×( 2+ ×( 3+…+ ×( n+1=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次測試中,卷面滿分為100分,考生得分為整數(shù),規(guī)定60分及以上為及格.某調(diào)研課題小組為了調(diào)查午休對考生復(fù)習(xí)效果的影響,對午休和不午休的考生進(jìn)行了測試成績的統(tǒng)計(jì),數(shù)據(jù)如下表:

(1)根據(jù)上述表格完成下列列聯(lián)表:

(2)判斷“能否在犯錯誤的概率不超過0.010的前提下認(rèn)為成績及格與午休有關(guān)”?

(參考公式:,其中.)

0.010

0.05

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險(xiǎn)公司針對企業(yè)職工推出一款意外險(xiǎn)產(chǎn)品,每年每人只要交少量保費(fèi),發(fā)生意外后可一次性獲賠50萬元.保險(xiǎn)公司把職工從事的所有崗位共分為、、三類工種,根據(jù)歷史數(shù)據(jù)統(tǒng)計(jì)出三類工種的每賠付頻率如下表(并以此估計(jì)賠付概率).

(Ⅰ)根據(jù)規(guī)定,該產(chǎn)品各工種保單的期望利潤都不得超過保費(fèi)的20%,試分別確定各類工種每張保單保費(fèi)的上限;

(Ⅱ)某企業(yè)共有職工20000人,從事三類工種的人數(shù)分布比例如圖,老板準(zhǔn)備為全體職工每人購買一份此種保險(xiǎn),并以(Ⅰ)中計(jì)算的各類保險(xiǎn)上限購買,試估計(jì)保險(xiǎn)公司在這宗交易中的期望利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校高三年級學(xué)生某次身體素質(zhì)體能測試的原始成績采用百分制,已知所有這些學(xué)生的原始成績均分布在內(nèi),發(fā)布成績使用等級制,各等級劃分標(biāo)準(zhǔn)見下表.

百分制

85分及以上

70分到84分

60分到69分

60分以下

等級

A

B

C

D

規(guī)定:AB,C三級為合格等級,D為不合格等級為了解該校高三年級學(xué)生身體素質(zhì)情況,從中抽取了n名學(xué)生的原始成績作為樣本進(jìn)行統(tǒng)計(jì).

按照,,的分組作出頻率分布直方圖如圖1所示,樣本中分?jǐn)?shù)在80分及以上的所有數(shù)據(jù)的莖葉圖如圖2所示

n和頻率分布直方圖中的x,y的值,并估計(jì)該校高一年級學(xué)生成績是合格等級的概率;

根據(jù)頻率分布直方圖,求成績的中位數(shù)精確到

在選取的樣本中,從AD兩個等級的學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行調(diào)研,求至少有一名學(xué)生是A等級的概率.

查看答案和解析>>

同步練習(xí)冊答案