5.若$cosα=\frac{1}{3}$,則$sin(α-\frac{π}{2})$=$-\frac{1}{3}$.

分析 由已知利用誘導(dǎo)公式即可化簡求值.

解答 解:∵$cosα=\frac{1}{3}$,
∴$sin(α-\frac{π}{2})$=-cosα=-$\frac{1}{3}$.
故答案為:-$\frac{1}{3}$.

點(diǎn)評 本題主要考查了誘導(dǎo)公式在三角函數(shù)化簡求值中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=x3-ax+100在區(qū)間(1,+∞)內(nèi)是增函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.a<3B.a>3C.a≤3D.a≥3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.從裝有3個紅球和2個白球的袋中任取3個球,則所取的3個球中至少有2個紅球的概率是( 。
A.$\frac{1}{2}$B.$\frac{2}{5}$C.$\frac{7}{10}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)向量$\vec a,\vec b$的夾角為θ,已知向量$\vec a=({x,\sqrt{3}}),\vec b=({x,-\sqrt{3}})$,若$({2\vec a+\vec b})⊥\vec b$,則θ=$\frac{2}{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知實(shí)數(shù)a,b,c,d滿足,b=a-2ea,c+d=4,其中e是自然對數(shù)的底數(shù),則(a-c)2+(b-d)2的最小值為( 。
A.16B.18C.20D.22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若${(x+\frac{2}{x})^n}$的二項展開式的各項系數(shù)之和為729,則該展開式中常數(shù)項的值為160.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖所示,正八邊形A1A2A3A4A5A6A7A8的邊長為2,若P為該正八邊形邊上的動點(diǎn),則$\overrightarrow{{A_1}{A_3}}•\overrightarrow{{A_1}P}$的取值范圍為( 。
A.$[0,8+6\sqrt{2}]$B.$[-2\sqrt{2},8+6\sqrt{2}]$C.$[-8-6\sqrt{2},2\sqrt{2}]$D.$[-8-6\sqrt{2},8+6\sqrt{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某綜藝節(jié)目為增強(qiáng)娛樂性,要求現(xiàn)場嘉賓與其場外好友連線互動.凡是拒絕表演節(jié)目的好友均無連線好友的機(jī)會;凡是選擇表演節(jié)目的好友均需連線未參加過此活動的3個好友參與此活動,以此下去.
(Ⅰ)假設(shè)每個人選擇表演與否是等可能的,且互不影響,則某人選擇表演后,其連線的3個好友中不少于2個好友選擇表演節(jié)目的概率是多少?
(Ⅱ)為調(diào)查“選擇表演者”與其性別是否有關(guān),采取隨機(jī)抽樣得到如表:
 選擇表演拒絕表演合計
501060
101020
合計602080
①根據(jù)表中數(shù)據(jù),是否有99%的把握認(rèn)為“表演節(jié)目”與好友的性別有關(guān)?
②將此樣本的頻率視為總體的概率,隨機(jī)調(diào)查3名男性好友,設(shè)X為3個人中選擇表演的人數(shù),求X的分布列和期望.
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$;
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,已知cosC+(cosA-$\sqrt{3}$sinA)cosB=0.
(1)求角B的大。
(2)若sin(A-$\frac{π}{3}$)=$\frac{3}{5}$,求sin2C.

查看答案和解析>>

同步練習(xí)冊答案