11.已知正數(shù)x,y滿足 $\frac{2}{x}+\frac{3}{y}=1$,則2x+3y的最小值為25.

分析 利用“1”的代換,結(jié)合基本不等式,即可得出結(jié)論.

解答 解:∵正數(shù)x,y滿足 $\frac{2}{x}+\frac{3}{y}=1$,
∴2x+3y=(2x+3y)($\frac{2}{x}$+$\frac{3}{y}$)=13+$\frac{6x}{y}$+$\frac{6y}{x}$≥13+12=25,
當(dāng)且僅當(dāng)x=y時(shí)取等號,即2x+3y的最小值為25.
故答案為:25.

點(diǎn)評 本題考查基本不等式的運(yùn)用,考查“1”的代換,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)函數(shù)y=f(x)的定義域?yàn)镈,若對于任意x1,x2∈D,當(dāng)x1+x2=2a時(shí),恒有f(x1)+f(x2)=2b,則稱點(diǎn)(a,b)為函數(shù)y=f(x)圖象的對稱中心,研究函數(shù)f(x)=x3+sinx+2的圖象的某一個對稱點(diǎn),并利用對稱中心的上述定義,可得到$f(-1)+f(-\frac{9}{10})+…+f(0)+…+f(\frac{9}{10})+f(1)$=42.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若$\overrightarrow{a}$,$\overrightarrow$不共線,且λ$\overrightarrow{a}$+μ$\overrightarrow$=$\overrightarrow{0}$(λ,μ∈R),則( 。
A.$\overrightarrow{a}$=$\overrightarrow{0}$,$\overrightarrow$=$\overrightarrow{0}$B.λ=μ=0C.λ=0,$\overrightarrow$=$\overrightarrow{0}$D.$\overrightarrow{a}$=$\overrightarrow{0}$,μ=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知銳角△ABC中,內(nèi)角A,B,C所對應(yīng)的邊分別為a,b,c,且滿足:b2-a2=ac,c=2,則a的取值范圍是($\frac{2}{3}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=(x2-ax-a)ex
(1)討論f(x)的單調(diào)性;
(2)若a∈(0,2),對于任意x1,x2∈[-4,0],都有$|f({x_1})-f({x_2})|<4{e^{-2}}+m{e^a}$恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某機(jī)械研究所對新研發(fā)的某批次機(jī)械元件進(jìn)行壽命追蹤調(diào)查,隨機(jī)抽查的200個機(jī)械元件情況如下:
使用時(shí)間(單位:天)10:2021:3031:4041:5051:60
個數(shù)1040805020
若以頻率為概率,現(xiàn)從該批次機(jī)械元件隨機(jī)抽取3個,則至少有2個元件的使用壽命在30天以上的概率為( 。
A.$\frac{13}{16}$B.$\frac{27}{64}$C.$\frac{25}{32}$D.$\frac{27}{32}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.對某一批產(chǎn)品進(jìn)行抽樣檢查,采取一件一件地抽查.若抽查4件未發(fā)現(xiàn)不合格產(chǎn)品,則停止檢查并認(rèn)為該批產(chǎn)品合格.若在查到第四件或在此之前發(fā)現(xiàn)不合格產(chǎn)品也停止檢查,并認(rèn)為該批產(chǎn)品不合格.假定合格概率為0.9;
(1)求該隨機(jī)變量X的分布列和數(shù)學(xué)期望;
(2)通過抽樣檢查,認(rèn)為該批產(chǎn)品不合格的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.把正整數(shù)排列成如圖1所示的三角形數(shù)陣,然后擦去偶數(shù)行中的奇數(shù)和奇數(shù)行中的偶數(shù),得到如圖2所示的三角形數(shù)陣,設(shè)aij為圖2所示三角形數(shù)陣中第i行第j個數(shù),若amn=2017,則實(shí)數(shù)對(m,n)為(45,41).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=xex-ae2x(a∈R)恰有兩個極值點(diǎn)x1,x2(x1<x2).
(1)求實(shí)數(shù)a的取值范圍;
(2)求證:f(x2)>-$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案