已知M={(x,y)|x2+y2=1,0<y≤1},N={(x,y)|y=x+b,b∈R},并且M∩N≠∅,那么b的取值范圍是
 
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:集合A是以原點(diǎn)為圓心,以1為半徑的上半圓,不含(1,0)點(diǎn),集合B是一條直線,由M∩N≠∅,利用數(shù)形結(jié)合思想能求出b的取值范圍.
解答: 解:∵M(jìn)={(x,y)|x2+y2=1,0<y≤1},
N={(x,y)|y=x+b,b∈R},
∴集合A是以原點(diǎn)為圓心,以1為半徑的上半圓,
不含(1,0)點(diǎn),集合B是一條直線,(如圖)
∵M(jìn)∩N≠∅,
∴當(dāng)集合B表示的直線與l1無(wú)限接近時(shí),b與-1無(wú)限接近,
當(dāng)當(dāng)集合B表示的直線與l2重合時(shí),b=
12+12
=
2

∴b的取值范圍是(-1,
2
].
故答案為:(-1,
2
].
點(diǎn)評(píng):本題考查實(shí)數(shù)b的取值范圍的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意數(shù)形結(jié)合思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x=a和x=b是函數(shù)f(x)=lnx+
1
2
x2-(m+2)x的兩個(gè)極值點(diǎn),其中a<b,m∈R.
(1)求f(a)+f(b)的取值范圍;
(2)若m≥
e
+
1
e
-2(e為自然對(duì)數(shù)的底數(shù)),求f(b)-f(a)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(α,β)(x)=(α+
1
x
x+β(x>0,α≥0,β≥0)
①令g(x)=ln(f(1,1)(x)),求證:g(x)在(0,1)上單調(diào)遞減;
②若f(α,0)(x)≤e在(0,+∞)上恒成立,求α的取值范圍.(e為自然對(duì)數(shù)底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax-
1
x
-(a+1)lnx(a>0).
(Ⅰ)若曲線y=f(x)在點(diǎn)(2,f(2))處的切線與直線y=
3
4
x平行,求實(shí)數(shù)a的值;
(Ⅱ)若函數(shù)f(x)在x=1處取得極小值,且m≥-a2+4a,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若雙曲線
x2
m2
-
y2
n2
=1和橢圓
x2
a2
+
y2
b2
=1有相同的焦點(diǎn)F1、F2,M為兩曲線的交點(diǎn),則|MF1|•|MF2|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=x3-3x2+2-a≤0在[-1,2]上恒成立,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x2-
54
x
在區(qū)間(-∞,0)上的最小值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)橢圓
x2
a2
+
y2
b2
=1的左焦點(diǎn)F且傾斜角為45°的直線交橢圓于A、B兩點(diǎn),若
FA
=2
BF
,則該橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

-300°的弧度數(shù)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案