【題目】設(shè)曲線 ,點(diǎn)為的焦點(diǎn),過點(diǎn)作斜率為1的直線與曲線交于,兩點(diǎn),點(diǎn),的橫坐標(biāo)的倒數(shù)和為-1.
(1)求曲線的標(biāo)準(zhǔn)方程;
(2)過焦點(diǎn)作斜率為的直線交曲線于,兩點(diǎn),分別以點(diǎn),為切點(diǎn)作曲線的切線相交于點(diǎn),過點(diǎn)作軸的垂線交軸于點(diǎn),求三角形面積的最小值.
【答案】(1);(2)2.
【解析】
(1)設(shè)直線的方程,與拋物線聯(lián)立,由點(diǎn),的橫坐標(biāo)的倒數(shù)和為-1,結(jié)合韋達(dá)定理代入求值即可;(2)設(shè)的方程為,與拋物線聯(lián)立求得,求過M,N的切線方程求得Q(2k,0),利用點(diǎn)到線的距離求點(diǎn)到直線/的距離為,利用求解即可
(1)由題意可知:,故可設(shè)直線的方程為即
聯(lián)立方程可得∴
由題意知:,即,即,得.
∴曲線的標(biāo)準(zhǔn)方程為.
(2)由題意知直線的斜率是存在的,故設(shè)的方程為,
設(shè)與曲線相交于點(diǎn),
聯(lián)立方程可得∴
∴.
由,得. ∴.
∴,∴……①
∴,∴……②
上述兩式相減得:,∴.∴點(diǎn)坐標(biāo)為.
∴點(diǎn)到直線的距離為.
∴
又∵,∴.易知當(dāng)時,的面積最小,且為2,
即.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了緩解城市交通壓力,某市市政府在市區(qū)一主要交通干道修建高架橋,兩端的橋墩現(xiàn)已建好,已知這兩橋墩相距m米,“余下的工程”只需建兩端橋墩之間的橋面和橋墩.經(jīng)測算,一個橋墩的工程費(fèi)用為256萬元;距離為x米的相鄰兩墩之間的橋面工程費(fèi)用為(2+)x萬元.假設(shè)橋墩等距離分布,所有橋墩都視為點(diǎn),且不考慮其他因素.記“余下工程”的費(fèi)用為y萬元.
(1)試寫出工程費(fèi)用y關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)m=640米時,需新建多少個橋墩才能使工程費(fèi)用y最?并求出其最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(α為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.直線1的極坐標(biāo)方程為.
(Ⅰ)求C的普通方程和l的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線l與x軸和y軸的交點(diǎn)分別為A,B,點(diǎn)M在曲線C上,求△MAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①若線性回歸方程為,則當(dāng)變量增加一個單位時,一定增加3個單位;②將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上同一個常數(shù)后,方差不會改變;③線性回歸直線方程必過點(diǎn);④抽簽法屬于簡單隨機(jī)抽樣;其中錯誤的說法是( )
A.①③B.②③④C.①D.①②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年11月5日至10日,首屆中國國際進(jìn)口博覽會在國家會展中心(上海)舉行,吸引過來58個“一帶一路”沿線國家的超過1000多家企業(yè)參展,成為共建“一帶一路”的又一個重要支撐。某企業(yè)為了參加這次盛會,提升行業(yè)競爭力,加大了科技投入;該企業(yè)連續(xù)6年來得科技投入(百萬元)與收益(百萬元)的數(shù)據(jù)統(tǒng)計如下:
根據(jù)散點(diǎn)圖的特點(diǎn),甲認(rèn)為樣本點(diǎn)分布在指數(shù)曲線的周圍,據(jù)此他對數(shù)據(jù)進(jìn)行了一些初步處理,如下表:
其中,.
(1)()請根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程(保留一位小數(shù));
()根據(jù)所建立回歸方程,若該企業(yè)想在下一年的收益達(dá)到2億,則科技投入的費(fèi)用至少要多少(其中)?
(2)乙認(rèn)為樣本點(diǎn)分布在二次曲線的周圍,并計算得回歸方程為,以及該回歸模型的相關(guān)指數(shù),試比較甲乙兩位員工所建立的模型,誰的擬合效果更好.
附:對于一組數(shù)據(jù),,……,其回歸直線方程的斜率和截距的最小二乘估計分別為,,相關(guān)指數(shù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=f(x),x∈[1,+∞),數(shù)列{an}滿足,
①函數(shù)f(x)是增函數(shù);
②數(shù)列{an}是遞增數(shù)列.
寫出一個滿足①的函數(shù)f(x)的解析式______.
寫出一個滿足②但不滿足①的函數(shù)f(x)的解析式______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中有四個小球,分別寫有“美、麗、華、一”四個字,有放回地從中任取一個小球,直到“華”“一”兩個字都取到就停止,用隨機(jī)模擬的方法估計恰好在第四次停止的概率.利用計算機(jī)隨機(jī)產(chǎn)生0到3之間取整數(shù)值的隨機(jī)數(shù),分別用0,1,2,3代表“美、麗、華、一”這四個字,以每四個隨機(jī)數(shù)為一組,表示取球四次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下20組隨機(jī)數(shù):
2323 3211 2303 1233 0211 1322 2201 2213 0012 1231
2312 1300 2331 0312 1223 1031 3020 3223 3301 3212
由此可以估計,恰好第四次就停止的概率為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com