16.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}y≥1\\ y≤2x-1\\ x+y≤m\end{array}\right.$且目標(biāo)函數(shù)z=x-y的最小值為-1,則m=(  )
A.6B.5C.4D.3

分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)z=x-y的最小值是-1,確定m的取值.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
由目標(biāo)函數(shù)z=x-y的最小值是-1,
得y=x-z,即當(dāng)z=-1時,函數(shù)為y=x+1,此時對應(yīng)的平面區(qū)域在直線y=x+1的下方,
由$\left\{\begin{array}{l}{y=x+1}\\{y=2x-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,即A(2,3),
同時A也在直線x+y=m上,即m=2+3=5,
故選:B.

點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)條件求出m的值是解決本題的關(guān)鍵,利用數(shù)形結(jié)合是解決此類問題的基本方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在極坐標(biāo)系中,曲線C的方程為ρ2cos2θ=9,點(diǎn)P(2$\sqrt{3}$,$\frac{π}{6}$),以極點(diǎn)O為原點(diǎn),極軸為x軸的正半軸建立直角坐標(biāo)系.
(1)求直線OP的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(2)若直線OP與曲線C交于A、B兩點(diǎn),求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.學(xué)生體質(zhì)與學(xué)生飲食的科學(xué)性密切相關(guān),營養(yǎng)學(xué)家指出,高中學(xué)生良好的日常飲食應(yīng)該至少提供0.075kg的碳水化合物,0.06kg的蛋白質(zhì),0.06kg的脂肪.已知1kg食物A含有0.105kg碳水化合物,0.07kg蛋白質(zhì),0.14kg脂肪,花費(fèi)28元;1kg食物B含有0.105kg碳水化合物,0.14kg蛋白質(zhì),0.07kg脂肪,花費(fèi)21元.為了滿足高中學(xué)生日常飲食的營養(yǎng)要求,每天合理搭配食物A和食物B,則最低花費(fèi)是16元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)$y=tan({x-\frac{π}{3}})$的單調(diào)增區(qū)間為$({kπ-\frac{π}{6},kπ+\frac{5π}{6}}),k∈Z$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列說法:
①將一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變;
②設(shè)有一個線性回歸方程$\stackrel{∧}{y}$=3-5x,變量x增加1個單位時,y平均增加5個單位;
③設(shè)具有相關(guān)關(guān)系的兩個變量x,y的相關(guān)系數(shù)為r,則|r|越接近于0,x和y之間的線性相關(guān)程度越強(qiáng);
④在一個2×2列聯(lián)表中,由計(jì)算得K2的值,則K2的值越大,判斷兩個變量間有關(guān)聯(lián)的把握就越大.
其中錯誤的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(1)若角θ的終邊過P(-4t,3t)(t>0),求2sinθ+cosθ的值.
(2)已知角α的終邊上一點(diǎn)P的坐標(biāo)為($x,-\sqrt{3}$)(x≠0),且$cosα=\frac{{\sqrt{2}}}{4}x$,求sinα和tanα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.${({2\frac{7}{9}})^{0.5}}+{0.1^{-2}}+{({2\frac{10}{27}})^{-\frac{2}{3}}}-{π^0}+\frac{37}{48}$=$\frac{807}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=2lnx-$\frac{1}{2}$ax2-bx-1.
(1)當(dāng)a=b=1時,求函數(shù)f(x)的最大值;
(2)當(dāng)b=1,a≤0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(3)當(dāng)a=0,b=-4時,方程x2+2mf(x)=0有唯一解,求實(shí)數(shù)m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某商場對甲、乙兩種品牌的商品進(jìn)行為期100天的營銷活動,為調(diào)查這100天的日銷售情況,隨機(jī)抽取了10天的日銷售量(單位:件)作為樣本,樣本數(shù)據(jù)的莖葉圖如圖.若日銷量不低于50件,則稱當(dāng)日為“暢銷日”.
(Ⅰ)現(xiàn)從甲品牌日銷量大于40且小于60的樣本中任取兩天,求這兩天都是“暢銷日”的概率;
(Ⅱ)用抽取的樣本估計(jì)這100天的銷售情況,請完成這兩種品牌100天銷量的2×2列聯(lián)表,并判斷是否有99%的把握認(rèn)為品牌與“暢銷日”天數(shù)有關(guān).
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.0500.0100.001
k03.8416.63510.828
暢銷日天數(shù)非暢銷日天數(shù)合計(jì)
甲品牌5050100
乙品牌3070100
合計(jì)80120200

查看答案和解析>>

同步練習(xí)冊答案