A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 由誘導(dǎo)公式化簡,分類討論去絕對(duì)值即可.
解答 解:由誘導(dǎo)公式化簡可得F(x)=$\frac{|sinx|}{cos(\frac{3π}{2}+x)}$-$\frac{sin(\frac{3π}{2}-x)}{|cosx|}$+$\frac{|tanx|}{tanx}$=$\frac{|sinx|}{sinx}$+$\frac{cosx}{|cosx|}$+$\frac{|tanx|}{tanx}$,
∵角x≠$\frac{kπ}{2}$(k∈Z),∴角x的終邊不在坐標(biāo)軸,
∴當(dāng)x為第一象限角時(shí),F(xiàn)(x)=$\frac{|sinx|}{sinx}$+$\frac{cosx}{|cosx|}$+$\frac{|tanx|}{tanx}$=1+1+1=3;
當(dāng)x為第二象限角時(shí),F(xiàn)(x)=$\frac{|sinx|}{sinx}$+$\frac{cosx}{|cosx|}$+$\frac{|tanx|}{tanx}$=1-1-1=1;
當(dāng)x為第三象限角時(shí),F(xiàn)(x)=$\frac{|sinx|}{sinx}$+$\frac{cosx}{|cosx|}$+$\frac{|tanx|}{tanx}$=-1-1+1=1;
當(dāng)x為第四象限角時(shí),F(xiàn)(x)=$\frac{|sinx|}{sinx}$+$\frac{cosx}{|cosx|}$+$\frac{|tanx|}{tanx}$=-1+1-1=1.
故F(x)可能取值的個(gè)數(shù)為2.
故選:B.
點(diǎn)評(píng) 本題考查三角函數(shù)化簡求值,涉及分類討論的思想和誘導(dǎo)公式,屬基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0) | B. | (0,4) | C. | (4,+∞) | D. | (-∞,0)∪(4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{20\sqrt{2}}}{3}$ | B. | $\frac{{20\sqrt{3}}}{3}$ | C. | $\frac{{50\sqrt{2}}}{9}$ | D. | $\frac{{50\sqrt{3}}}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com