4.設偶函數(shù)f(x)滿足f(x)=2x-4(x≥0),若f(x-2)>0,則x的取值范圍是( 。
A.(-∞,0)B.(0,4)C.(4,+∞)D.(-∞,0)∪(4,+∞)

分析 先利用偶函數(shù)的圖象關于y軸對稱得出f(x)>0的解集,再運用整體思想求f(x-2)>0的解集.

解答 解:根據(jù)題意,當x≥0時.f(x)=2x-4,
令f(x)=2x-4>0,解得x>2,
又∵f(x)是定義在R上的偶函數(shù)f(x),其圖象關于y軸對稱,
∴不等式f(x)>0在x∈R的解集為(-∞,-2)∪(2,+∞),
因此,不等式f(x-2)>0等價為:x-2∈(-∞,-2)∪(2,+∞),
解得x∈(-∞,0)∪(4,+∞),
故選D.

點評 本題主要考查了指數(shù)型復合函數(shù)的圖象和性質(zhì),涉及函數(shù)的奇偶性和不等式的解法,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

14.以下五個說法:
①函數(shù)y=x2在R上是增函數(shù).   
②函數(shù)$y=\frac{1}{x}$的單調(diào)遞減區(qū)間是(-∞,0)∪(0,+∞).
③實數(shù)集可以表示為{R}.  
④方程$\sqrt{2x-1}+|{2y+1}|=0$的解集是$\{(\frac{1}{2},-\frac{1}{2})\}$.
⑤集合M={y|y=x2+1,x∈R}與集合N={(x,y)|y=x2+1,x∈R}表示同一個集合.
其中正確的命題序號是④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.函數(shù)f(x)=x2-4x-4在區(qū)間[t,t+1](t∈R)上的最小值記為g(t).
(1)試寫出g(x)的函數(shù)表達式;
(2)求g(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在數(shù)列{an},若a${\;}_{n}^{2}$-a${\;}_{n-1}^{2}$=k(n≥2,n∈N*,k為常數(shù)),則稱{an}為等方差數(shù)列.
(1)若數(shù)列{bn}是等方差數(shù)列,b1=1,b2=3,寫出所有滿足條件的數(shù)列{bn}的前4項;
(2)若等方差數(shù)列{an}滿足a1=2,a2=2$\sqrt{2}$,an>0,設數(shù)列{$\frac{1}{{a}_{n}}$}的前n項和為Tn,是否存在正整數(shù)p,q,使不等式Tn>$\sqrt{pn+q}$-1對一切n∈N*都成立?若存在,求出p,q的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在△ABC中,a、b、c分別是角A、B、C的對邊,且$\frac{cosB}{cosC}=\frac{2a-c}$.
(1)求角B的大;
(2)若b=$\sqrt{7}$,且△ABC的面積為$\frac{3\sqrt{3}}{2}$,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=|x+$\frac{1}{x}$|-|x-$\frac{1}{x}$|.
(1)指出f(x)=|x+$\frac{1}{x}$|-|x-$\frac{1}{x}$|的基本性質(zhì)(兩條即可,結(jié)論不要求證明),并作出函數(shù)f(x)的圖象;
(2)關于x的方程f2(x)+m|f(x)|+n=0(m,n∈R)恰有6個不同的實數(shù)解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知a=ln$\frac{1}{2}$,b=e${\;}^{\frac{1}{2}}$,c=2-e(e≈2.71828…),則a,b,c的大小關系為( 。
A.b<a<cB.a<b<cC.a<c<bD.c<a<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知角x≠$\frac{kπ}{2}$(k∈Z),函數(shù)F(x)=$\frac{|sinx|}{cos(\frac{3π}{2}+x)}$-$\frac{sin(\frac{3π}{2}-x)}{|cosx|}$+$\frac{|tanx|}{tanx}$,則F(x)可能取值的個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,長方體ABCD-A1B1C1D1的底面邊長均為1,側(cè)棱AA1=2,M,N分別是A1C1,A1A的中點,
(1)求$\overrightarrow{CN}$的長;
(2)求cos<$\overrightarrow{C{A}_{1}}$,$\overrightarrow{D{C}_{1}}$>的值;
(3)求證:A1C⊥D1M.

查看答案和解析>>

同步練習冊答案