9.已知函數(shù)f(x)=x-${e^{\frac{x}{a}}}$存在單調(diào)遞減區(qū)間,且y=f(x)的圖象在x=0處的切線l與曲線y=ex相切,符合情況的切線l有0條.

分析 求出f(x)的導(dǎo)數(shù),由題意可得f′(x)<0在(-∞,+∞)有解,討論a<0,a>0可得a>0成立,求得切線l的方程,再假設(shè)l與曲線y=ex相切,設(shè)切點(diǎn)為(x0,y0),即有e${\;}^{{x}_{0}}$=1-$\frac{1}{a}$=(1-$\frac{1}{a}$)x0-1,消去a得e${\;}^{{x}_{0}}$=e${\;}^{{x}_{0}}$x0-1,設(shè)h(x)=exx-ex-1,求出導(dǎo)數(shù)和單調(diào)區(qū)間,可得h(x)在(0,+∞)有唯一解,由a>0,即可判斷不存在.

解答 解:函數(shù)f(x)=x-e${\;}^{\frac{x}{a}}$的導(dǎo)數(shù)為f′(x)=1-$\frac{1}{a}$e${\;}^{\frac{x}{a}}$,
依題意可知,f′(x)<0在(-∞,+∞)有解,
①a<0時(shí),f′(x)<0 在(-∞,+∞)無解,不符合題意;
②a>0時(shí),f′(x)>0即a>e${\;}^{\frac{x}{a}}$,lna>$\frac{x}{a}$,x<alna符合題意,則a>0.
易知,曲線y=f(x)在x=0處的切線l的方程為y=(1-$\frac{1}{a}$)x-1.
假設(shè)l與曲線y=ex相切,設(shè)切點(diǎn)為(x0,y0),
即有e${\;}^{{x}_{0}}$=1-$\frac{1}{a}$=(1-$\frac{1}{a}$)x0-1,
消去a得e${\;}^{{x}_{0}}$=e${\;}^{{x}_{0}}$x0-1,
設(shè)h(x)=exx-ex-1,
則h′(x)=exx,令h′(x)>0,則x>0,
所以h(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增,
當(dāng)x→-∞,h(x)→-1,x→+∞,h(x)→+∞,
所以h(x)在(0,+∞)有唯一解,則e${\;}^{{x}_{0}}$>1,
而a>0時(shí),1-$\frac{1}{a}$<1,與e${\;}^{{x}_{0}}$>1矛盾,所以不存在.
故答案為:0.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的方程和單調(diào)區(qū)間,考查直線方程的運(yùn)用和構(gòu)造函數(shù)法,以及函數(shù)方程的轉(zhuǎn)化思想的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,設(shè)不等式組$\left\{{\begin{array}{l}{-1≤x≤1}\\{0≤y≤1}\end{array}}\right.$表示的平面區(qū)域?yàn)殚L(zhǎng)方形ABCD,長(zhǎng)方形ABCD內(nèi)的曲線為拋物線y=x2的一部分,若在長(zhǎng)方形ABCD內(nèi)隨機(jī)取一個(gè)點(diǎn),則此點(diǎn)取自陰影部分的概率等于( 。
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=x2-8lnx的單調(diào)遞減區(qū)間為(  )
A.[2,+∞)B.(-∞,2]C.(0,2]D.(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意的n∈N*,都有2,an,Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=log2an,設(shè)數(shù)列${c_n}=\frac{1}{{\sqrt{b_n}+\sqrt{{b_{n+1}}}}}$,數(shù)列{cn}的前n項(xiàng)和為Tn,求使不等式Tn>9成立的最小正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=cos2x+acosx+2.
(1)若a>0,且當(dāng)x∈R時(shí),f(x)的最小值為-1,求實(shí)數(shù)a的值;
(2)若a=2,且當(dāng)x∈[0,$\frac{π}{2}$]時(shí),f(x)>m(cosx+1)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)是定義在R上的偶函數(shù),若對(duì)于x≥0,都有f(x+2)=-$\frac{1}{f(x)}$,且當(dāng)x∈[0,2]時(shí),f(x)=log2(x+1),求f(-2011)+f(2013)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若cosα=-$\frac{1}{2}$,-π<α<0,則角α=-$\frac{2π}{3}$.(用弧度表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若關(guān)于x的一元二次不等式x2-3ax+2a2≥0的解集是(-∞,x1]∪[x2,+∞)(x1≠x2),則a(x1+x2)+$\frac{1}{{x}_{1}{x}_{2}}$的最小值是( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\frac{2\sqrt{6}}{3}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖是導(dǎo)函數(shù)y=f′(x)在(a,b)上的圖象,下列說法正確的個(gè)數(shù)是( 。
(1)x1和x3是函數(shù)y=f(x)的極大值點(diǎn)
(2)x4不是函數(shù)y=f(x)的極小值點(diǎn)
(3)函數(shù)y=f(x)共有4個(gè)極值點(diǎn)
(4)函數(shù)y=f(x)在x2處取最小值.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案