分析 (1)由三角函數(shù)中的恒等變換應(yīng)用化簡函數(shù)解析式可得f(x)=2sin(2x+$\frac{π}{6}$),由2kπ$-\frac{π}{2}$≤2x+$\frac{π}{6}$≤2k$π+\frac{π}{2}$,k∈Z可解得f(x)的單調(diào)遞增區(qū)間.
(2)由f(x)=1得sin(2x+$\frac{π}{6}$)=$\frac{1}{2}$,由x∈[$\frac{π}{6}$,$\frac{π}{2}$],可得2x+$\frac{π}{6}$∈[$\frac{π}{2}$,$\frac{7π}{6}$],利用正弦函數(shù)的圖象即可求得x的值.
解答 (本題滿分為12分)
解:(1)f(x)=2$\sqrt{3}$sinxcosx+2cos2x-1=$\sqrt{3}$sin2x+cos2x=2sin(2x+$\frac{π}{6}$).…(4分)
所以由2kπ$-\frac{π}{2}$≤2x+$\frac{π}{6}$≤2k$π+\frac{π}{2}$,k∈Z可解得f(x)的單調(diào)遞增區(qū)間為:[-$\frac{π}{3}$+kπ,$\frac{π}{6}$+kπ],k∈Z.…(6分)
(2)由f(x)=1得sin(2x+$\frac{π}{6}$)=$\frac{1}{2}$,
∵x∈[$\frac{π}{6}$,$\frac{π}{2}$],
∴2x+$\frac{π}{6}$∈[$\frac{π}{2}$,$\frac{7π}{6}$],
∴2x+$\frac{π}{6}$=$\frac{5π}{6}$,
∴x=$\frac{π}{3}$.…(12分)
點評 本題主要考查了三角函數(shù)中的恒等變換應(yīng)用,平面向量數(shù)量積的運算,正弦函數(shù)的圖象和性質(zhì),屬于基本知識的考查.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com