11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x-5,x≥6}\\{f(x+2),x<6}\end{array}\right.$則f(5)等于( 。
A.2B.3C.4D.-2

分析 首先由5<6得到f(5)=f(7),再由7>6,得到f(7)=75-,得到答案.

解答 解:由已知函數(shù)f(x)=$\left\{\begin{array}{l}{x-5,x≥6}\\{f(x+2),x<6}\end{array}\right.$則f(5)=f(5+2)=f(7)=7-5=2.
故選:A.

點(diǎn)評(píng) 本題考查了分段函數(shù)的函數(shù)值求法;關(guān)鍵是明確自變量范圍,對(duì)號(hào)入座,代入對(duì)應(yīng)的解析式求值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若cos(α-β)cosβ-sin(α-β)sinβ=-m,且α為第三象限,則sinα的值( 。
A.-$\sqrt{1-{m}^{2}}$B.$\sqrt{1-{m}^{2}}$C.$\sqrt{{m}^{2}-1}$D.-$\sqrt{{m}^{2}-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,函數(shù)y=f(x)是可導(dǎo)函數(shù),曲線y=f(x)過點(diǎn)(2,3),且在x=2處的切線l在y軸上的截距為2,令g(x)=xf(x),則曲線y=g(x)在x=2處的切線方程是4x-y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x≥0,y≥0}\\{x+2y≤8}\\{3x+y≤9}\end{array}\right.$,則z=2x+3y的最大值是13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知向量$\overrightarrow{a}$=($\sqrt{3}$sinx,cosx),$\overrightarrow$=(cosx,cosx),函數(shù)f(x)=2$\overrightarrow{a}$•$\overrightarrow$-1
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[$\frac{π}{6}$,$\frac{π}{2}$]時(shí),若f(x)=1,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.$\int_1^2{(2x-1})dx$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.對(duì)于函數(shù)y=f(x),當(dāng)x∈(0,+∞)時(shí),總有f(x)<xf′(x),若m>n>0,則下列不等式中,恒成立的是( 。
A.$\frac{f(m)}{n}$<$\frac{f(n)}{m}$B.$\frac{f(m)}{m}$<$\frac{f(n)}{n}$C.$\frac{f(m)}{n}$>$\frac{3f(n)}{m}$D.$\frac{f(m)}{m}$>$\frac{f(n)}{n}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.甲有三本不同的書,乙去借閱,且至少借1本,則不同借法的總數(shù)為( 。
A.3B.6C.7D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖⊙O中,弦AB與弦CD相交于點(diǎn)P,∠B=38°,∠APD=80°,則∠A等于( 。
A.38°B.42°C.80°D.118°

查看答案和解析>>

同步練習(xí)冊答案