設(shè)數(shù)列{an}是由集合{3s+3t|0≤s<t,且s,t∈Z}中所有的數(shù)從小到大排列成的數(shù)列,即a1=4,a2=10,a3=12,a4=28,a5=30,a6=36,…,若a2014=3m+3n(0≤m<n,且m,n∈Z},則m+n的值等于
 
考點(diǎn):數(shù)列遞推式
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:如果用(t,s)表示3s+3t,分別根據(jù)數(shù)列an的值,確定an的利取值規(guī)律,利用歸納推理即可得到結(jié)論.
解答: 解:如果用(t,s)表示3s+3t,
則a1=(0,1)=30+31,a2=(0,2)=30+32,
a3=(1,2)=31+32,a4=(0,3),
a5=(1,3),a6=(2,3),
a7=(0,4),a8=(1,4),
a9=(2,4),a10=(3,4).
利用歸納推理即可得:
…,
當(dāng)t=62時(shí),最后一項(xiàng)為1+2+…+62=
62×63
2
=1953,
當(dāng)t=63時(shí),最后一項(xiàng)為1+2+…+63=
63×64
2
=2016,
∴a2014一定在第63行,則a2016=(62,63),向前數(shù)三個(gè)即是a2013
∴a2013=(60,63)
即m=60,n=63,
∴m+n=60+63=123,
故答案為:123
點(diǎn)評:本題考查了一個(gè)探究規(guī)律型的問題,解題時(shí)要認(rèn)真分析題意,尋找其中的規(guī)律,從而解出結(jié)果.綜合性較強(qiáng),難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某工廠對某產(chǎn)品的產(chǎn)量與成本的資料分析后由如下數(shù)據(jù)
 產(chǎn)量x(千件) 2 3 5 6
 成本y(萬元) 7 8 9 12
(1)畫出散點(diǎn)圖
(2)求成本y與x之間的線性回歸方程
(3)當(dāng)成本為15萬元時(shí),試估計(jì)產(chǎn)量為多少件?(保留兩位小數(shù))(
a
=
.
y
-
b
.
x
,
b
=
 i i-n
.
x
.
y
n
i-1
xi2-n(
.
x
)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)(x∈R)滿足f(x+π)=f(x)+sinx,當(dāng)0≤x<π時(shí),f(x)=0,則f(
23π
6
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(sinx-cosx)sinx,x∈R,則f(x)的對稱軸是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若A、B是銳角三角形的兩內(nèi)角,則tanA•tanB
 
1(填“>”或“<”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若tan(α+β)=
3
5
,tan(β-
π
4
)=
1
4
,則tan(α+
π
4
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bsinx+4(a,b∈R),f(lg(log210))=5,則f(lg(lg2))=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某程序框圖如右圖所示,則輸出的n值是( 。
A、.21B、22
C、.23D、.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={-1,0,1,2},B={-1,2,3},則A∩B=( 。
A、{-1,0,1,2,3}
B、{-1,2}
C、{0,1,3}
D、{x|-1≤x≤2}

查看答案和解析>>

同步練習(xí)冊答案