分析 (1)當(dāng)n>1時(shí)利用2an=2Sn-2Sn-1計(jì)算、整理可知(p-2)an-pan-1-2=0,變形可知an+1=$\frac{p}{p-2}$(an-1+1),進(jìn)而可知數(shù)列{an+1}是以首項(xiàng)、公比均為$\frac{p}{p-2}$的等比數(shù)列;
(2)通過(guò)(1)可知an+1=$(\frac{p}{p-2})^{n}$,利用a2=3可知p=4,進(jìn)而可得結(jié)論.
解答 (1)證明:依題意,當(dāng)n>1時(shí),2an=2Sn-2Sn-1
=pan-2n-[pan-1-2(n-1)]
=pan-pan-1-2,
∴(p-2)an-pan-1-2=0,
整理得:an+1=$\frac{p}{p-2}$(an-1+1),
又∵2S1=pa1-2,即a1=$\frac{2}{p-2}$,
∴a1+1=$\frac{2}{p-2}$+1=$\frac{p}{p-2}$,
∴數(shù)列{an+1}是以首項(xiàng)、公比均為$\frac{p}{p-2}$的等比數(shù)列;
(2)由(1)可知an+1=$(\frac{p}{p-2})^{n}$,
又∵a2=3,
∴a2+1=$(\frac{p}{p-2})^{2}$=4,
∴$\frac{p}{p-2}$=±2,
解得:p=4或$\frac{4}{3}$(舍),
∴$\frac{p}{p-2}$=2,an+1=2n,
∴數(shù)列{an}的通項(xiàng)公式an=2n-1.
點(diǎn)評(píng) 本題考查等比數(shù)列的判定及數(shù)列的通項(xiàng),對(duì)表達(dá)式的靈活變形是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com