已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與直角坐標(biāo)系的軸的正半軸重合.直線的參數(shù)方程是(為參數(shù)),曲線C的極坐標(biāo)方程為

(Ⅰ)求曲線C的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線與曲線C相交于M,N兩點,求M,N兩點間的距離.

 

【答案】

(Ⅰ)x2+y2-x-y=0;(Ⅱ)

【解析】

試題分析:(Ⅰ)利用x=,y=,可把曲線C的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程.(Ⅱ)把直線l的參數(shù)方程轉(zhuǎn)化為普通方程,求出圓心到直線l的距離,最后利用勾股定理即可求出MN的長度.

試題解析:(Ⅰ)將曲線C的極坐標(biāo)方程化為=,所以2=

即x2+y2=x+y,所以曲線C的直角坐標(biāo)方程x2+y2-x-y=0.

(Ⅱ)直線l的參數(shù)方程中消去參數(shù)t可得普通方程4x-3t+1=0,而圓的普通方程為x2+y2-x-y=0,所以圓心C(,),半徑r=,圓心C到直線l的距離d=

所以直線l被圓C截得的弦長為:=.即M、N兩點間的距離為.

考點:1.極坐標(biāo)方程、參數(shù)方程、普通方程以及它們之間的互化;2.點到直線的距離公式.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與直角坐標(biāo)系的x軸的正半軸重合.設(shè)點O為坐標(biāo)原點,直線l:
x=
2
2
t+4
y=
2
2
t
(參數(shù)t∈R)與曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ.
(1)求直線l與曲線C的普通方程;
(2)設(shè)直線L與曲線C相交于A,B兩點,求證:
OA
OB
=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與直角坐標(biāo)系的x軸的正半軸重合.設(shè)點O為坐標(biāo)原點,直線l:
x=t
y=2+2t
(參數(shù)t∈R)與曲線C的極坐標(biāo)方程為 ρcos2θ=2sinθ
(Ⅰ)求直線l與曲線C的普通方程;
(Ⅱ)設(shè)直線l與曲線C相交于A,B兩點,證明:
OA
OB
=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.
(1)選修4-2:矩陣與變換
已知矩陣A=
12
34

①求矩陣A的逆矩陣B;
②若直線l經(jīng)過矩陣B變換后的方程為y=x,求直線l的方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與直角坐標(biāo)系中x軸的正半軸重合.圓C的參數(shù)方程為
x=1+2cosα
y=-1+2sinα
(a為參數(shù)),點Q極坐標(biāo)為(2,
7
4
π).
(Ⅰ)化圓C的參數(shù)方程為極坐標(biāo)方程;
(Ⅱ)若點P是圓C上的任意一點,求P、Q兩點距離的最小值.
(3)選修4-5:不等式選講
(I)關(guān)于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范圍.
(II)設(shè)x,y,z∈R,且
x2
16
+
y2
5
+
z2
4
=1
,求x+y+z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•許昌二模)已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與直角坐標(biāo)系中x軸的正半軸重合,且兩坐標(biāo)系有相同的長度單位,圓C的參數(shù)方程為
x=1+2cosα
y=-1+2sinα
(α為參數(shù)),點Q的極坐標(biāo)為(2
2
7
4
π).
(Ⅰ)化圓C的參數(shù)方程為極坐標(biāo)方程;
(Ⅱ)若直線l過點Q且與圓C交于M,N兩點,求當(dāng)|MN|最小時,直線l的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•大連二模)選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點與直角坐標(biāo)系xOy的坐標(biāo)原點O重合,極軸與x軸的非負(fù)半軸重合.曲線C1的參數(shù)方程為
x=-2+
10
cosθ
y=
10
sinθ
為參數(shù)),曲線C2的極坐標(biāo)方程為ρ=2cosθ+6sinθ.問曲線C1,C2是否相交,若相交請求出公共弦所在直線的方程,若不相交,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案