17.?dāng)?shù)列{an}滿足:a1=0,a2=1,an=an-1+2an-2(n≥3)計(jì)一個算法,列出數(shù)列{an}的前20項(xiàng),并畫出程序框圖.

分析 這是一個累加求和問題,可設(shè)計(jì)一個計(jì)數(shù)變量k,一個累加變量C,用循環(huán)結(jié)構(gòu)實(shí)現(xiàn)這一算法.

解答 解:程序框圖:

點(diǎn)評 本題考查程序框圖,通過對程序的分析畫出程序框圖,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)命題$p:a∈\{y|y=\sqrt{-{x^2}+2x+8},x∈R\}$,命題q:關(guān)于x的方程x2+x-a=0有實(shí)根.
(1)若p為真命題,求a的取值范圍;
(2)若“p∧q”為假命題,且“p∨q”為真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.定義:對于數(shù)列{xn},如果存在常數(shù)p,使對任意正整數(shù)n,總有(xn+1-p)(xn-p)<0成立,那么我們稱數(shù)列{xn}為“p-擺動數(shù)列”.
(1)設(shè)an=2n-1,${b_n}={q^n}$(-1<q<0),n∈N*,判斷數(shù)列{an}、{bn}是否為“p-擺動數(shù)列”,并說明理由;
(2)已知“p-擺動數(shù)列”{cn}滿足:${c_{n+1}}=\frac{1}{{{c_n}+1}}$,c1=1.求常數(shù)p的值;
(3)設(shè)${d_n}={(-1)^n}•(\;2n-1)$,n∈N*,且數(shù)列{dn}的前n項(xiàng)和為Sn.求證:數(shù)列{Sn}是“p-擺動數(shù)列”,并求出常數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0,a2-b2=c2,c>0)與y軸正半軸的交點(diǎn)為B,點(diǎn)P在橢圓上,則|BP|的最大值為( 。
A.2bB.$\frac{{a}^{2}}{c}$C.2b或$\frac{^{2}}{c}$D.2b或$\frac{{a}^{2}}{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)三條直線x-2y=1,2x+ky=3,3kx+4y=5交于一點(diǎn),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)y=tan($\frac{π}{3}$-x)的定義域是(  )
A.{x|x∈R,且x≠-$\frac{π}{3}$}B.{x|x∈R,且x≠$\frac{5}{6}π$}
C.{x|x∈R,且x≠kπ+$\frac{5}{6}$π,k∈Z}D.{x|x∈R,且x≠kπ-$\frac{5}{6}$π,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)A={x∈N|$\frac{6}{2-x}$∈N}.用列舉法表示集合A={-4,-1,0,1,3,4,5,8}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.正方體ABCD-A1B1C1D1中,
(1)與棱A1B1平行的棱是AD、BC、DD1、CC1;與棱B1B異面的棱為AD、A1D1、DC、D1C1;與棱C1B1垂直的棱為AB、A1B1、DC、D1C1、AA1、DD1,CC1,BB1;
以下各題,解答應(yīng)寫出文字說明、證明過程或演算步驟
(2)A1B與CC1所成的角是45°;A1B1與CC1所成的角是90°;D1C與C1B所成的角是60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知數(shù)列{an}滿足an=$\left\{\begin{array}{l}{n,n=2k-1}\\{{a}_{\frac{n}{2}},n=2k}\end{array}\right.$,其中,k∈N*,設(shè)f(n)=a1+a2+a3+a4+…+${a}_{{2}^{n}-2}$+${a}_{{2}^{n}-1}$+${a}_{{2}^{n}}$,則f(2016)-f(2014)的值為42014

查看答案和解析>>

同步練習(xí)冊答案