11.如果實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{2x+y-2≥0}\\{x-y+2≥0}\\{x-a≤0}\end{array}\right.$,若z=$\frac{y-1}{x+1}$的最小值小于$\frac{1}{2}$,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,1)B.(1,+∞)C.($\frac{1}{5}$,1)D.($\frac{1}{5}$,+∞)

分析 由約束條件作出可行域,再由z=$\frac{y-1}{x+1}$的幾何意義,即點(diǎn)P(-1,1)與可行域內(nèi)點(diǎn)的連線的斜率列式求得a的范圍.

解答 解:由約束條件$\left\{\begin{array}{l}{2x+y-2≥0}\\{x-y+2≥0}\\{x-a≤0}\end{array}\right.$作出可行域如圖,

由題意判斷a>0,
z=$\frac{y-1}{x+1}$的幾何意義表示點(diǎn)P(-1,1)與可行域內(nèi)點(diǎn)的連線的斜率,
則當(dāng)取正弦x=a與2x+y-2=0的交點(diǎn)(a,2-2a)時(shí),z有最小值,得$\frac{1-2a}{a+1}<\frac{1}{2}$,解得a$>\frac{1}{5}$.
故選:D.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法和數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=lnx+ax+$\frac{1}{2}$,a∈R.
(Ⅰ)若直線4x-2y-1=0與曲線y=f(x)相切于點(diǎn)A,求A的坐標(biāo);
(Ⅱ)是否存在a,使f(x)在區(qū)間(0,e]上的最大值不超過(guò)ln$\frac{1}{{a}^{2}+1}$?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在四棱錐A-BCDE中,底面BCDE為菱形,側(cè)面ABE為等邊三角形,且側(cè)面ABE⊥底面BCDE,O,F(xiàn)分別為BE,DE的中點(diǎn).
(Ⅰ)求證:AO⊥CD;
(Ⅱ)求證:平面AOF⊥平面ACE;
(Ⅲ)側(cè)棱AC上是否存在點(diǎn)P,使得BP∥平面AOF?若存在,求出$\frac{AP}{PC}$的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知數(shù)列{an}的前n項(xiàng)和Sn=$\frac{n(n+1)}{2}$.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=(-1)n(an•${2^{a_n}}$+$\frac{1}{{\sqrt{{a_{n+1}}}-\sqrt{a_n}}}$),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,四邊形ABCD為菱形,EB⊥平面ABCD,EF∥BD,EF=$\frac{1}{2}$BD.
(Ⅰ)求證:DF∥平面AEC;
(Ⅱ)求證:平面AEF⊥平面AFC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知直線m,n與平面α,β,下列命題中錯(cuò)誤的是(  )
A.若m⊥α,n⊥α,則m∥nB.若m⊥β,n∥β,則m⊥n
C.若m⊥α,n⊥β,α⊥β,則m⊥nD.若m∥n,n?α,則m∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知(2+x2)${(ax+\frac{1}{a})^6}$展開(kāi)式中含x4項(xiàng)的系數(shù)為45,則正實(shí)數(shù)a的值為$\frac{\sqrt{2}}{2}$或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知集合A={x|x2-1≥0,x∈R},B={x|0≤x<3,x∈R},則A∩B=( 。
A.{x|1<x<3,x∈R}B.{x|1≤x≤3,x∈R}C.{x|1≤x<3,x∈R}D.{x|0<x<3,x∈R}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與圓E:x2+y2-y-2=0在第一象限相交于點(diǎn)P,橢圓C的左、右焦點(diǎn)F1,F(xiàn)2都在圓E上,且線段PF1為圓E的直徑.
(1)求橢圓C的方程;
(2)設(shè)直線l與橢圓C相交于A,B兩點(diǎn),且直線l與y軸相交于D點(diǎn),M為線段AB的中點(diǎn),O為坐標(biāo)原點(diǎn),若$\overrightarrow{OM}$•$\overrightarrow{OD}$=1,求|OM|•|AB|的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案