分析 (Ⅰ)由題意,可求得a2,再由a2的值求a3,再由a3 的值求出a4的值.
(Ⅱ)猜想檢驗n=1時等式成立,假設n=k時命題成立,證明當n=k+1時命題也成立.
解答 解:(Ⅰ)當n=2時,a1+a2=6a2,解得a2=$\frac{1}{15}$;
當n=3時,a1+a2+a3=15a3,解得a3=$\frac{1}{35}$;
當n=4時,a1+a2+a3+a4=28a4,解得a4=$\frac{1}{63}$.
(Ⅱ)∴a1=$\frac{1}{3}$=$\frac{1}{1×3}$,a2=$\frac{1}{15}$=$\frac{1}{3×5}$,a3=$\frac{1}{35}$=$\frac{1}{5×7}$,a4=$\frac{1}{63}$=$\frac{1}{7×9}$,
故猜想an=$\frac{1}{(2n-1)(2n+1)}$.
下面用數(shù)學歸納法證明:
①當n=1時,由已知顯然成立
②設當n=k時,結論成立,即ak=$\frac{1}{(2k-1)(2k+1)}$
當n=k+1時,∵Sk+1=Sk+ak+1=(k+1)(2k+1)ak+1,…(﹡)
又Sk=k(2k-1)ak=k(2k-1)•$\frac{1}{(2k-1)(2k+1)}$=$\frac{k}{2k+1}$代入(﹡)式得$\frac{k}{2k+1}$+ak+1=(k+1)(2k+1)ak+1,
解得ak+1=$\frac{1}{(2k+1)(2k+3)}$,由以上歸納證明可知猜想成立.
點評 本題考查數(shù)列的遞推公式,用數(shù)學歸納法證明等式成立.證明當n=k+1時命題也成立,是解題的難點.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\frac{1}{2}$ | C. | 0 | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{3π}{8}$ | C. | $\frac{3π}{4}$ | D. | $\frac{5π}{8}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com