分析 證明BC⊥平面ACD,三棱錐S-ABC可以擴(kuò)充為以AC,BC,DC為棱的長(zhǎng)方體,外接球的直徑為體對(duì)角線,求出球的半徑,即可求出球O的表面積.
解答 解:由題意,AC⊥平面BCD,BC?平面BCD,
∴AC⊥BC,
∵BC⊥CD,AC∩CD=C,
∴BC⊥平面ACD,
∴三棱錐S-ABC可以擴(kuò)充為以AC,BC,DC為棱的長(zhǎng)方體,外接球的直徑為體對(duì)角線,
∴4R2=AC2+BC2+CD2=12,
∴R=$\sqrt{3}$,
∴球O的表面積為4πR2=12π.
故答案為12π.
點(diǎn)評(píng) 本題給出特殊的三棱錐,由它的外接球的表面積.著重考查了線面垂直的判定與性質(zhì)、勾股定理與球的表面積公式等知識(shí),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 12 | B. | 16 | C. | $\frac{1}{84}$ | D. | $\frac{2}{251}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com