7.已知xy-(x+y)=1(x,y為正實(shí)數(shù)),則x•y的最小值為$3+2\sqrt{2}$.

分析 利用基本不等式的性質(zhì)與一元二次不等式的解法即可得出.

解答 解:∵x,y為正實(shí)數(shù),
∴xy=(x+y)+1≥2$\sqrt{xy}$+1,當(dāng)且僅當(dāng)x=y時(shí)取等號(hào).
化為$(\sqrt{xy})^{2}$-2$\sqrt{xy}$-1≥0,
解得$\sqrt{xy}$≥1+$\sqrt{2}$,
∴xy≥3+2$\sqrt{2}$.
故答案為:3+2$\sqrt{2}$.

點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì)與一元二次不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.f(x)=x|x|+x3+2在[-2015,2015]上的最大值與最小值之和為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.y=x-$\sqrt{1-4x}$的值域是{y|y≤$\frac{1}{4}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖程序執(zhí)行完的結(jié)果是( 。
A.5,-1B.4,-6C.1,-3D.無正確答案

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知A、B、C是直線l上的不同的三點(diǎn),O是直線外一點(diǎn),設(shè)$\overrightarrow{OC}=λ\overrightarrow{OA}+μ\overrightarrow{OB}$.
(1)證明:A、B、C三點(diǎn)共線的條件是λ+μ=1
(2)若$\overrightarrow{OA}=(3x+1)•\overrightarrow{OB}+(\frac{3}{2+3x}-y)•\overrightarrow{OC}$成立.記y=f(x),求函數(shù)y=f(x)的解析式;
(3)在(2)的條件下,若對(duì)任意x∈[$\frac{1}{6}$,$\frac{1}{3}$],不等式|a-lnx|-ln[f(x)-3x]>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足bcosA=(2c+a)cos(π-B)
(Ⅰ)求角B的大小;
(Ⅱ)若b=$\sqrt{21}$,△ABC的面積為$\sqrt{3}$,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,正方體ABCD-A′B′C′D′中,$\overrightarrow{BD}=2\overrightarrow{BE}$.設(shè)點(diǎn)F在線段CC'上,直線EF與平面A'BD所成的角為α,則sinα的取值范圍是(  )
A.$[\frac{{\sqrt{3}}}{3},1]$B.$[\frac{{2\sqrt{2}}}{3},1]$C.$[\frac{{\sqrt{6}}}{3},\frac{{2\sqrt{2}}}{3}]$D.$[\frac{{\sqrt{6}}}{3},1]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在正三棱柱ABC-A1B1C1(側(cè)棱垂直于底面,且底面是正三角形)中,AC=CC1=6,M是棱CC1上一點(diǎn).
(1)若M、N分別是CC1、AB的中點(diǎn),求證:CN∥平面AB1M;
(2)求證:不論M在何位置,三棱錐A1-AMB1的體積都為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x+a+1,x<2}\\{x+{a}^{2},x≥2}\end{array}\right.$的值域?yàn)镽,則實(shí)數(shù)a的取值范圍為[0,1].

查看答案和解析>>

同步練習(xí)冊(cè)答案