【題目】已知拋物線的頂點(diǎn)為原點(diǎn),其焦點(diǎn)到直線的距離為.設(shè)為直線上的點(diǎn),過點(diǎn)作拋物線的兩條切線,其中為切點(diǎn).

(1) 求拋物線的方程;

(2) 當(dāng)點(diǎn)為直線上的定點(diǎn)時(shí),求直線的方程;

(3) 當(dāng)點(diǎn)在直線上移動(dòng)時(shí),求的最小值.

【答案】() () ()

【解析】試題分析:(1)設(shè)拋物線的方程為,利用點(diǎn)到直線的距離,求出,得到拋物線方程;(2)對(duì)拋物線方程求導(dǎo),求出切線的斜率,用點(diǎn)斜式寫出切線方程,化成一般式,找出共同點(diǎn),得到直線的方程;(3)由拋物線定義可知,聯(lián)立直線與拋物線方程,消去,得到一個(gè)關(guān)于的一元二次方程,由韋達(dá)定理求得的值,還有,表示成的二次函數(shù)的形式,再求出最值.

試題解析: 解:(1)依題意,設(shè)拋物線的方程為,由結(jié)合,

解得,所以拋物線的方程為.

2)拋物線的方程為,即,求導(dǎo)得,

設(shè) (其中)則切線的斜率分別為

所以切線的方程為,即,即

同理可得切線的方程為,

因?yàn)榍芯均過點(diǎn),所以,

所以為方程的兩組解,

所以直線的方程為.

3)由拋物線定義可知,

聯(lián)立方程,消去整理得.

由一元二次方程根與系數(shù)的關(guān)系可得

所以

又點(diǎn)在直線上,所以,

所以,

所以當(dāng)時(shí), 取得最小值,且取得最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,,兩兩互相垂直,,點(diǎn),分別在側(cè)面、棱上運(yùn)動(dòng),,為線段中點(diǎn),當(dāng),運(yùn)動(dòng)時(shí),點(diǎn)的軌跡把三棱錐分成上、下兩部分的體積之比等于( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中,,,四邊形為矩形,平面平面,.

1)求證:平面;

2)在線段上是否存在點(diǎn),使得平面與平面所成銳二面角的平面角為,且滿足?若不存在,請(qǐng)說明理由;若存在,求出的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解人們對(duì)“延遲退休年齡政策”的態(tài)度,某部門從年齡在歲到歲的人群中隨機(jī)調(diào)查了人,并得到如圖所示的頻率分布直方圖,在這人中不支持“延遲退休年齡政策”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如圖所示:

年齡

不支持“延遲退休年齡政策”的人數(shù)

(1)由頻率分布直方圖,估計(jì)這人年齡的平均數(shù);

(2)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表,據(jù)此表,能否在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為以歲為分界點(diǎn)的不同人群對(duì)“延遲退休年齡政策”的態(tài)度存在差異?

45歲以下

45歲以上

總計(jì)

不支持

支持

總計(jì)

附:

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)在R上存在導(dǎo)數(shù) ,有,在 上, ,若 ,則實(shí)數(shù)m的取值范圍為( )

A.B.

C.[-3,3]D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如上圖所示,在正方體中, 分別是棱的中點(diǎn), 的頂點(diǎn)在棱與棱上運(yùn)動(dòng),有以下四個(gè)命題:

A.平面 ; B.平面⊥平面;

C 在底面上的射影圖形的面積為定值;

D 在側(cè)面上的射影圖形是三角形.其中正確命題的序號(hào)是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】產(chǎn)能利用率是指實(shí)際產(chǎn)出與生產(chǎn)能力的比率,工r產(chǎn)能利用率是衡量工業(yè)生產(chǎn)經(jīng)營(yíng)狀況的重要指標(biāo).下圖為國(guó)家統(tǒng)計(jì)局發(fā)布的2015年至2018年第2季度我國(guó)工業(yè)產(chǎn)能利用率的折線圖.

在統(tǒng)計(jì)學(xué)中,同比是指本期統(tǒng)計(jì)數(shù)據(jù)與上一年同期統(tǒng)計(jì)數(shù)據(jù)相比較,例如2016年第二季度與2015年第二季度相比較;環(huán)比是指本期統(tǒng)計(jì)數(shù)據(jù)與上期統(tǒng)計(jì)數(shù)據(jù)相比較,例如2015年第二季度與2015年第一季度相比較.

據(jù)上述信息,下列結(jié)論中正確的是( ).

A. 2015年第三季度環(huán)比有所提高B. 2016年第一季度同比有所提高

C. 2017年第三季度同比有所提高D. 2018年第一季度環(huán)比有所提高

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在甲地,隨著人們生活水平的不斷提高,進(jìn)入電影院看電影逐漸成為老百姓的一種娛樂方式.我們把習(xí)慣進(jìn)入電影院看電影的人簡(jiǎn)稱為“有習(xí)慣”的人,否則稱為“無習(xí)慣的人”.某電影院在甲地隨機(jī)調(diào)查了100位年齡在15歲到75歲的市民,他們的年齡的頻數(shù)分布和“有習(xí)慣”的人數(shù)如下表:

(1)以年齡45歲為分界點(diǎn),請(qǐng)根據(jù)100個(gè)樣本數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有的把握認(rèn)為“有習(xí)慣”的人與年齡有關(guān);

(2)已知甲地從15歲到75歲的市民大約有11萬人,以頻率估計(jì)概率,若每張電影票定價(jià)為,則在“有習(xí)慣”的人中約有的人會(huì)買票看電影(為常數(shù)).已知票價(jià)定為30元的某電影,票房達(dá)到了 69.3萬元.某新影片要上映,電影院若將電影票定價(jià)為25元,那么該影片票房估計(jì)能達(dá)到多少萬元?

參考公式:,其中.

參考臨界值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若有兩個(gè)相異零點(diǎn),求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案