17.已知函數(shù)f(x)=-x3+ax2+bx+c的一個極值點是x=1,則9a+3b的最小值是(  )
A.10B.$2\sqrt{3}$C.$6\sqrt{3}$D.$4\sqrt{6}$

分析 求出函數(shù)的導數(shù),得到f′(1)=-3+2a+b=0,求出2a+b=3,結合基本不等式的性質,求出答案即可.

解答 解:f(x)=-x3+ax2+bx+c,
f′(x)=-3x2+2ax+b,
∵函數(shù)f(x)的一個極值點是x=1,
∴f′(1)=-3+2a+b=0,
故2a+b=3,
∴9a+3b≥2$\sqrt{{3}^{2a+b}}$=6$\sqrt{3}$,
故選:C.

點評 本題考查了函數(shù)的極值問題,考查導數(shù)的應用以及基本不等式的性質,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.在△ABC中,三個角滿足2A=B+C,且最大邊與最小邊分別是方程x2-12x+32=0的兩根,則△ABC外接圓的面積為(  )
A.16πB.64πC.124πD.156π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=ex-ln(x+m).
(1)設x=0是f(x)的極值點,求函數(shù)f(x)在[1,2]上的最值;
(2)若對任意x1,x2∈[0,2]且x1>x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>-1,求m的取值范圍.
(3)當m≤2時,證明f(x)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.在△ABC中,角A,B,C的對邊分別為a,b,c
(1)若a,b,c成等差數(shù)列,且sinA=2sinC,求cosB的值;
(2)若b=c=2,且函數(shù)f(x)=$\frac{1}{4}$x3-$\frac{3}{4}$x的極大值為cosA,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知a是實常數(shù),函數(shù)f(x)=xlnx+ax2,
(1)若曲線y=f(x)在x=1處的切線過點A(0,-2),求實數(shù)a的值;
(2)若f(x)有兩個極值點x1,x2(x1<x2
①求證:-$\frac{1}{2}$<a<0;
②求證:f(x2)>f(x1)且x1∈(0,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知數(shù)列{an}的通項公式為an=3n-50,則當n等于(  )時,Sn取得最小值?
A.16B.17C.18D.16或17

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知等比數(shù)列{an}的通項公式為an=an-1(n∈N*),則S=1+a+a2+…+an=$\left\{\begin{array}{l}n+1,(a=1)\\ \frac{{1-{a^{n+1}}}}{1-a},(a≠1)\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設命題p:曲線y=x2+2x+2t-4與x軸沒有交點;命題q:方程$\frac{x^2}{4-t}$+$\frac{y^2}{t-2}$=1所表示的曲線是焦點在x軸的橢圓.
(1)若命題p為真命題,求實數(shù)t的取值范圍;
(2)如果“p∨q”為真命題,“p∧q”為假命題,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{\frac{1}{2}\sqrt{{x^2}+1},x≥0}\\{-ln(1-x),x<0}\end{array}}$,若函數(shù)F(x)=f(x)-kx有且只有兩個零點,則k的取值范圍為($\frac{1}{2}$,1).

查看答案和解析>>

同步練習冊答案