A. | -1 | B. | -2 | C. | -3 | D. | -3或-2 |
分析 設(shè)切點為(a,a3-3a),利用導(dǎo)數(shù)的幾何意義,求得切線的斜率k=f′(a),利用點斜式寫出切線方程,將點A代入切線方程,可得關(guān)于a的方程有兩個不同的解,利用參變量分離可得2a3-3a2=-3-m,令g(x)=2x3-3x2,利用導(dǎo)數(shù)求出g(x)的單調(diào)性和極值,則根據(jù)y=g(x)與y=-3-m有兩個不同的交點,即可得到m的值
解答 解:設(shè)切點為(a,a3-3a),
∵f(x)=x3-3x,∴f′(x)=3x2-3,
∴切線的斜率k=f′(a)=3a2-3,
由點斜式可得切線方程為y-(a3-3a)=(3a2-3)(x-a),
∵切線過點A(1,m),
∴m-(a3-3a)=(3a2-3)(1-a),即2a3-3a2=-3-m,
∵過點A(1,m)(m≠-2)可作曲線y=f(x)的兩條切線,
∴關(guān)于a的方程2a3-3a2=-3-m有兩個不同的根,
令g(x)=2x3-3x2,
∴g′(x)=6x2-6x=0,解得x=0或x=1,
當(dāng)x<0時,g′(x)>0,當(dāng)0<x<1時,g′(x)<0,當(dāng)x>1時,g′(x)>0,
∴g(x)在(-∞,0)上單調(diào)遞增,在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,
∴當(dāng)x=0時,g(x)取得極大值g(0)=0,
當(dāng)x=1時,g(x)取得極小值g(1)=-1,
關(guān)于a的方程2a3-3a2=-3-m有兩個不同的根,等價于y=g(x)與y=-3-m的圖象有兩個不同的交點,
∴-3-m=-1或-3-m=0,解得m=-3或-2,
∴實數(shù)m的值是-3或-2;
故選:D.
點評 本題考查了利用導(dǎo)數(shù)研究曲線上某點切線方程,導(dǎo)數(shù)的幾何意義即在某點處的導(dǎo)數(shù)即該點處切線的斜率,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值,解題時要注意運用切點在曲線上和切點在切線上.運用了轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a+b=0 | B. | a-b=0 | C. | a+b=1 | D. | a-b=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①②③ | B. | ①②④ | C. | ②③④ | D. | ①②③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 18 | B. | 36 | C. | 54 | D. | 72 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{14}{3}$ | B. | $\frac{10}{3}$ | C. | 4 | D. | $\frac{16}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com