已知f(x)=2
3
sinxcosx+1,x∈R.
(1)求f(x)最小正周期和最大值.
(2)求f(x)的增區(qū)間.
考點:三角函數(shù)中的恒等變換應(yīng)用,正弦函數(shù)的圖象
專題:計算題,三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:(1)運用二倍角的正弦公式,化簡f(x),再由周期公式和正弦函數(shù)的最值,即可得到;
(2)由正弦函數(shù)的增區(qū)間,解不等式,即可得到所求區(qū)間.
解答: 解:(1)f(x)=2
3
sinxcosx+1=
3
sin2x+1,
則最小正周期為T=
2
=π,
當2x=2kπ+
π
2
(k∈Z),即x=kπ+
π
4
(k∈Z),時,f(x)取得最大值,且為1+
3
;
(2)由2kπ-
π
2
≤2x≤2kπ+
π
2
,解得kπ-
π
4
≤x≤kπ+
π
4
(k∈Z),
則f(x)的增區(qū)間為[kπ-
π
4
,kπ+
π
4
](k∈Z).
點評:本題考查二倍角公式的運用,考查正弦函數(shù)的周期、最值和單調(diào)區(qū)間,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

集合A={x∈N|x≤6},B={x∈R|x2-3x>0},則A∩B=(  )
A、{x|3≤x<6}
B、{3,4,5}
C、{x|3<x≤6}
D、{4,5,6}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過拋物線y2=4x焦點的直線交拋物線于A,B兩點,已知AB=8,O為坐標原點,求:△OAB的重心的橫坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=ex(lnx-a),e是自然對數(shù)的底數(shù),e≈2,718,a∈R為常數(shù).
(1)若y=f(x)在x=1處的切線l的斜率為2e,求a的值;
(2)在(1)的條件下,證明切線l與曲線y=f(x)在區(qū)間(0,
1
2
)至少有1個公共點;
(3)若[ln2,ln3]是y=f(x)的一個單調(diào)區(qū)間,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖等腰梯形ABCD中,AB∥CD,AD⊥BD,M為AB的中點,矩形ABEF所在的平面和平面ABCD相互垂直.
(1)求證:AD⊥平面DBE
(2)設(shè)DE的中點為P,求證MP∥平面DAF
(3)若AB=2,AD=AF=1求三棱錐E-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C的圓心坐標為(1,2),直線l:x+y-1=0與圓C相交于M、N兩點,|MN|=2.
(1)求圓C的方程;
(2)若t≠1,過點A(t,0)作圓C的切線,切點為B,記d1=|AB|,點A到直線l的距離為d2,求
d1-1
d2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=ax2+20x+14(a>0)對任意實數(shù)t,在閉區(qū)間[t-1,t+1]上總存在兩實數(shù)x1,x2,使得|f(x1)-f(x2)|≥8成立,則實數(shù)a的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果cos2014φ-sin2014φ>2014(sin2014φ-cos2014φ),φ∈[0,2π),則φ的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}中,an+1=3an+2(n∈N+),且a10=8,則a4=( 。
A、
1
81
B、-
80
81
C、
1
27
D、-
26
27

查看答案和解析>>

同步練習冊答案