15.在各項均為正數(shù)的等比數(shù)列{an}中,已知a1a5=25,則a3等于( 。
A.5B.25C.-25D.-5或5

分析 直接由已知結(jié)合等差數(shù)列的性質(zhì)求得a3

解答 解:在等比數(shù)列{an}中,由a1a5=25,得${{a}_{3}}^{2}=25$,即a3=±5.
∵an>0,∴a3=5.
故選:A.

點評 本題考查了等差數(shù)列的通項公式,考查等差數(shù)列的性質(zhì),是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}\frac{2}{x},x≥2\\{(x-1)^3},0<x<2\end{array}\right.$,若關(guān)于x的方程f(x)=kx有兩個不同的實根,則實數(shù)k的取值范圍是( 。
A.$({0,\frac{1}{2}})$B.$({0,\frac{{\sqrt{2}}}{4}})∪({\frac{{\sqrt{2}}}{4},\frac{1}{2}})$C.$({\frac{{\sqrt{2}}}{4},+∞})$D.$[{\frac{1}{2},2\sqrt{2}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.執(zhí)行如圖所示的程序框圖,如果輸入的x∈[-1,3],則輸出的y屬于( 。
A.[0,2]B.[1,2]C.[0,1]D.[-1,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,且4Sn=an2+2an(n∈N*).
(1)求a1的值及數(shù)列{an}的通項公式;
(2)記數(shù)列{$\frac{n+3}{{{a}_{n}}^{3}•{2}^{n}}$}的前n項和為Tn,求證:Tn<$\frac{9}{32}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,角A,B,C所對的邊分別為a,b,c,且cos$\frac{A+C}{2}$=$\frac{\sqrt{3}}{3}$.
(1)求cosB的值;
(2)若b=2$\sqrt{2}$,求ac的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知數(shù)列{an}的前n項和Sn=2an-2n+1,若不等式2n2-n-3<(5-λ)an對?n∈N+恒成立,則整數(shù)λ的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=2$\sqrt{3}sinxcosx+2{cos^2}$x(x∈R).
(Ⅰ)求函數(shù)f(x)的最小正周期及在區(qū)間$[{0,\frac{π}{2}}]$上的最大值和最小值;
(Ⅱ)將函數(shù)f(x)圖象向左平移$\frac{π}{6}$個單位,再向上平移1個單位,得到函數(shù)g(x)圖象,求g(x)的對稱軸方程和對稱中心坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=2x-$\frac{3}{x}$+alnx(a∈R),g(x)=3x-$\frac{3}{x}$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)的圖象與f(x)的圖象有兩個交點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知點P(2,6)和圓x2+y2+2x-4y-4=0,解答下列問題:
(1)求圓心和半徑;
(2)判斷點P是否在圓上;
(3)求圓上的點到點P的最長距離和最短距離.

查看答案和解析>>

同步練習(xí)冊答案