15.下列說法正確的是(  )
A.“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B.“x=-1”是“x2-5x-6=0”的必要不充分條件
C.“?x∈R,x3-x2+1≤0”的否定是“?x∈R,x3-x2+1>0“
D.“△ABC中,若A>B,則sinA>sinB”的逆否命題為真命題

分析 A.根據(jù)否命題的定義進行判斷,
B根據(jù)充分條件和必要條件的定義進行判斷,
C.根據(jù)特稱命題的否定是全稱命題進行判斷,
D.根據(jù)正弦定理以及逆否命題的等價性進行判斷.

解答 解:A.“若x2=1,則x=1”的否命題為:“若x2≠1,則x≠1”,故A錯誤,
B.由x2-5x-6=0得x=-1或x=5,則“x=-1”是“x2-5x-6=0”的充分不必要條件,故B錯誤,
C.全稱命題的否定是特稱命題,則“?x∈R,x3-x2+1≤0”的否定是“?x∈R,x3-x2+1>0“故C錯誤,
D.“△ABC中,若A>B,則a>b,由正弦定理得sinA>sinB,即原命題為真命題,則逆否命題為真命題,故D正確
故選:D

點評 本題主要考查命題的真假判斷,涉及四種命題,充分條件和必要條件,以及含有量詞的命題的否定,涉及的知識點較多,綜合性較強,但難度不大.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.命題p:實數(shù)x滿足x2-4ax+3a2<0,其中a<0,命題q:實數(shù)x滿足x2-x-6≤0,且q是p的必要不充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,∠ADC=∠BCD=90°,BC=2,$CD=\sqrt{3}$,PD=4,∠PDA=60°,且平面PAD⊥平面ABCD.
(Ⅰ)求證:AD⊥PB;
(Ⅱ)在線段PA上是否存在一點M,使二面角M-BC-D的大小為$\frac{π}{6}$,若存在,求$\frac{PM}{PA}$的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.在圓x2+y2=r2中,AB為直徑,C為圓上異于A,B的任意一點,則有kAC•KBC=-1,設直線AB過橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1中心,且和橢圓相交于點A,B,P(x,y)為橢圓上異于A,B的任意一點,用各類比的方法可得kAP•KBP=-$\frac{^{2}}{{a}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.甲、乙兩人下棋,和棋的概率為$\frac{1}{2}$,乙獲勝的概率為$\frac{1}{3}$,則下列說法正確的是(  )
A.甲獲勝的概率是$\frac{1}{6}$B.甲不輸?shù)母怕适?\frac{1}{2}$
C.乙輸了的概率是$\frac{2}{3}$D.乙不輸?shù)母怕适?\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.(普通班做)二項式(x-$\frac{1}{x}$)6的展開式的常數(shù)項是-20.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知${a_1}=\frac{1}{4}$,${a_n}=\frac{1}{2}{a_{n-1}}+{2^{-n}}$(n≥2)計算這個數(shù)列前4項,并歸納該數(shù)列一個通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在平面幾何中,研究正三角形內(nèi)任意一點與三邊的關系時,我們有真命題:邊長為a的正三角形內(nèi)任意一點到各邊的距離之和是定值$\frac{\sqrt{3}}{2}$a.
(1)試證明上述命題;
(2)類比上述命題,請寫出關于正四面體內(nèi)任意一點與四個面的關系的一個真命題,并給出簡要的證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=x3+bx2+2x-1(b∈R).
(1)設g(x)=$\frac{f(x)+1}{{x}^{2}}$,若函數(shù)g(x)在(0,+∞)上沒有零點,求實數(shù)b的取值范圍;
(2)若對?x∈[1,2],均?t∈[1,2],使得et-lnt-4≤f(x)-2x,求實數(shù)b的取值范圍.

查看答案和解析>>

同步練習冊答案