】求過點A(1,2),且平行于直線2x-3y+5=0的直線方程.

直線方程為2x-3y+4=0


解析:

設(shè)所求直線方程為2x-3y+m=0,因為直線過點A(1,2),則

2×1-3×2+m=0,∴m=4

∴所求直線方程為2x-3y+4=0

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【理科生做】已知點A、B的坐標分別是(0,-1),(0,1),直線AM、BM相交于點M,且它們的斜率之積為-1.
(1)求點M軌跡C的方程;
(2)若過點(2,0)且斜率為k的直線l與(1)中的軌跡C交于不同的兩點E、F(E在D、F之間),記△ODE與△ODF面積之比為λ,求關(guān)于λ和k的關(guān)系式,并求出λ取值范圍(O為坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•黃浦區(qū)二模)已知拋物線pa:y=x2+ax+a-2(a為實常數(shù)).
(1)求所有拋物線pa的公共點坐標;
(2)當實數(shù)a取遍一切實數(shù)時,求拋物線pa的焦點方程.
【理】(3)是否存在一條以y軸為對稱軸,且過點(-1,-1)的開口向下的拋物線,使它與某個pa只有一個公共點?若存在,求出所有這樣的a;若不存在,說明理由.
【文】(3)是否存在直線y=kx+b(k,b為實常數(shù)),使它與所有的拋物線pa都有公共點?若存在,求出所有這樣的直線;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【選做題】在A,B,C,D四個小題中只能選做2個小題,每小題10分,共計20分.請在答題卡指定區(qū)域內(nèi)作答,解答時應(yīng)寫出文字說明、證明過程或演算步驟.

A.選修4—1:幾何證明選講

如圖,ABO的直徑,弦BD、CA的延長線相交

于點E,EF垂直BA的延長線于點F.

求證: .

B.選修4-2:矩陣與變換

已知, 求矩陣B.

C.選修4—4:坐標系與參數(shù)方程

已知圓C:,直線,求過點C且與直線垂直的直線的極坐標方程.

D.選修4-5:不等式選講

已知,求函數(shù)的最小值以及取最小值時所對應(yīng)的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2007年上海市徐匯區(qū)零陵中學高三3月綜合練習數(shù)學試卷(四)(解析版) 題型:解答題

已知拋物線(a為實常數(shù)).
(1)求所有拋物線pa的公共點坐標;
(2)當實數(shù)a取遍一切實數(shù)時,求拋物線pa的焦點方程.
【理】(3)是否存在一條以y軸為對稱軸,且過點(-1,-1)的開口向下的拋物線,使它與某個pa只有一個公共點?若存在,求出所有這樣的a;若不存在,說明理由.
【文】(3)是否存在直線y=kx+b(k,b為實常數(shù)),使它與所有的拋物線pa都有公共點?若存在,求出所有這樣的直線;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案