19.在(1+x)(1-x210的展開式中x4的系數(shù)為45.

分析 根據(jù)(1-x210展開式的通項公式,求出展開式中x4的系數(shù),即可得出(1+x)(1-x210的展開式中x4的系數(shù)是多少.

解答 解:(1-x210展開式的通項公式為:
Tr+1=${C}_{10}^{r}$•(-x2r,
令r=2,得x4的系數(shù)為${C}_{10}^{2}$=45,且無x3項,
∴(1+x)(1-x210的展開式中x4的系數(shù)為45.
故答案為:45.

點評 本題考查二項式定理的應(yīng)用問題,解題時應(yīng)注意二項式展開式的靈活運用,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知f(x)=x(2013+lnx),f′(x0)=2 014,則x0等于(  )
A.e2B.1C.ln2D.e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.計算:
(1)sin2120°+cos180°+tan45°-cos2(-330°)+sin(-210°)
(2)$\frac{{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{11π}{2}-α)}}{{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{9π}{2}+α)}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.函數(shù)f(x)=Asin(?x+φ)(A>0,0<?<4,|φ|<$\frac{π}{2}$)過點(0,$\frac{1}{2}$),且當(dāng)x=$\frac{π}{6}$時,函數(shù)f(x)取得最大值1.
(1)將函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個單位得到函數(shù)g(x),求函數(shù)g(x)的表達式;
(2)在(1)的條件下,函數(shù)h(x)=f(x)+g(x)+2cos2x-1,如果對于?x1,x2∈R,都有h(x1)≤h(x)≤h(x2),求|x1-x2|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知(x+1)6(x-a)2的展開式中含x2項的系數(shù)是37,(a>0),則a的值等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知4a=3,將log89-2${\;}^{lo{g}_{4}3}$用a的代數(shù)式表示為$\frac{4}{3}$a-2a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)Sn是等差數(shù)列{an}的前n項和,若S1009-S1007=2,則S2016=( 。
A.1008B.1009C.2016D.2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知數(shù)列的通項公式為an=2n-1-1,則2047是這個數(shù)列的12項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求和:Sn=$\frac{{2}^{2}+1}{{2}^{2}-1}$+$\frac{{3}^{2}+1}{{3}^{2}-1}$+…+$\frac{(n+1)^{2}+1}{(n+1)^{2}-1}$.

查看答案和解析>>

同步練習(xí)冊答案