20.某種產(chǎn)品的廣告費(fèi)支出x與銷售額y(單位:百萬元)之間有如下對(duì)應(yīng)數(shù)據(jù),則其線性回歸直線方程是y=6.5x+17.5
x24568
y3040605070

分析 先求出橫標(biāo)和縱標(biāo)的平均數(shù),得到這組數(shù)據(jù)的樣本中心點(diǎn),利用最小二乘法求出線性回歸方程的系數(shù),代入樣本中心點(diǎn)求出a的值,寫出線性回歸方程.

解答 解:$\overline{x}$=5,$\overline{y}$=50,$\sum_{i=1}^{5}$${{x}_{i}}^{2}$=145,$\sum_{i=1}^{5}$xiyi=1380
∴b=(1380-5×5×50)÷(145-5×52)=6.5
a=50-6.5×5=17.5
故回歸方程為y=6.5x+17.5.
故答案為:y=6.5x+17.5.

點(diǎn)評(píng) 本題考查線性回歸方程的求法和應(yīng)用,本題解題的關(guān)鍵是利用最小二乘法求出線性回歸方程的系數(shù),這是解答正確的主要環(huán)節(jié).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)函數(shù)f(x)=ax2-2x+2,此函數(shù)在(1,4)上有零點(diǎn),則a的取值范圍為(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$ 則函數(shù)y=f[f(x)+1]的零點(diǎn)個(gè)數(shù)是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在區(qū)間[0,2]上隨機(jī)取兩個(gè)數(shù)x,y,則xy∈[0,2]的概率是$\frac{1+ln2}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,滿足:an2=2Sn-an(n∈N+
(1)證明:數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=3n+(-1)n-1λ•2an,是否存在整數(shù)λ(λ≠0),使bn+1>bn對(duì)一切n∈N+恒成立?若存在,求出λ;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知△ABC中,cosA=$\frac{12}{13}$,cosB=$\frac{3}{5}$,求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知命題p:?x∈R,x-2>0,命題q:?x∈R,$\sqrt{x}$>x,則下列說法中正確的是④.
①命題p∨q是假命題          
②命題p∧q是真命題
③命題p∨(¬q)是假命題      
④命題p∧(¬q)是真命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在邊長為1的菱形ABCD中,∠ABC=60°,將菱形沿對(duì)角線AC折起,使折起后BD=1,則二面角B-AC-D的平面角的余弦值$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.甲乙兩人相約上午8點(diǎn)到9點(diǎn)在某地會(huì)面,先到者等候另一個(gè)人20分鐘,過時(shí)離去,則甲乙兩人能夠會(huì)面的概率是( 。
A.$\frac{1}{9}$B.$\frac{4}{9}$C.$\frac{5}{9}$D.$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案