13.已知正四棱錐S-ABCD的底面邊長和側(cè)棱長都等于a.求:
(1)側(cè)棱與底面所成的角;
(2)側(cè)面與底面所成二面角的余弦值.

分析 (1)過S作SO⊥面ABCD,垂足為O,則∠SAO是側(cè)棱與底面所成的角,根據(jù)三角形的邊角關(guān)系進行求解.
(2)過O作OE⊥BC,交BC于E,連結(jié)SE,則∠SEO是側(cè)面SBC與底面ABCD所成二面角的平面角,利用三角形的邊角關(guān)系進行求解即可.

解答 解:如圖所示,連接AC,BD,相交于點O,連接OS.
∵四棱錐S-ABCD是正四棱錐,
∴OS⊥底面ABCD.
∴∠SAO是側(cè)棱與底面所成的角.
∵正四棱錐S-ABCD的底面邊長為a,
∴AO=$\frac{1}{2}AC$=$\frac{\sqrt{2}}{2}$a.
在Rt△OAS中,cos∠SAO=$\frac{OA}{SA}$=$\frac{\frac{\sqrt{2}}{2}a}{a}$=$\frac{\sqrt{2}}{2}$.
∴∠SAO=$\frac{π}{4}$.
即側(cè)棱與底面所成的角是$\frac{π}{4}$.
(2)過O作OE⊥BC,交BC于E,連結(jié)SE,
則由三垂線定理知:∠SEO是側(cè)面SBC與底面ABCD所成二面角的平面角,
由題意知SE=$\sqrt{{a}^{2}-(\frac{a}{2})^{2}}$=$\frac{\sqrt{3}}{2}$a,OE=$\frac{a}{2}$,
∴cos∠SEO=$\frac{OE}{SE}$=$\frac{\frac{a}{2}}{\frac{\sqrt{3}}{2}a}$=$\frac{\sqrt{3}}{3}$.

點評 本題考查了正四棱錐的性質(zhì)、線面角、二面角的計算,根據(jù)線面角和二面角的平面角的定義分別作出對應(yīng)的角是解決本題的關(guān)鍵.考查了推理能力與計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.直線x=$\frac{π}{12}$是函數(shù)y=asin3x+cos3x的一條對稱軸,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.將一根長為10cm的細(xì)鐵絲用剪刀剪成兩段,然后再將每一段剪成等長的兩段,并用這四段鐵絲圍成一個矩形,則所圍成矩形的面積大于6cm2的概率為$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若y=-$\frac{1}{2}$x2+bln(x+2)在(-1,+∞)上是單調(diào)減函數(shù),則b的范圍是( 。
A.[-1,+∞)B.(-1,+∞)C.(-∞,-1)D.(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,已知三棱錐ABC-A1B1C1的底面是正三角形,側(cè)面ABB1A1是菱形,且∠A1AB=60°,M是A1B1的中點,MB⊥AC.
(1)求證:平面ABB1A1⊥平面ABC;
(2)求二面角M-BB1-C1的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=$\frac{1}{2}$PD=1.
(1)證明:平面PQC⊥平面DCQ
(2)求二面角B-PC-Q的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,已知長方形ABCD中,AB=2$\sqrt{2}$,AD=$\sqrt{2}$,M為DC的中點,將△ADM沿AM折起,使得平面ADM⊥平面ABCM
(Ⅰ)求證:AD⊥BM
(Ⅱ)若點E是線段DB上的一動點,問點E在何位置時,二面角E-AM-D的余弦值為$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某三棱錐的正視圖和側(cè)視圖如圖所示,則該三棱錐的俯視圖的面積為( 。
A.6B.8C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.不等式$\frac{1}{x-1}$≤1的解集為( 。
A.{x|x<1}B.{x|x≥2}C.{x|x<1或x>2}D.{x|x<1或x≥2}

查看答案和解析>>

同步練習(xí)冊答案