14.已知圓x2+y2-2x+4y+1=0,則原點(diǎn)O在(  )
A.圓內(nèi)B.圓外C.圓上D.無(wú)法判斷

分析 (0,0)代入圓的方程的左邊,與0 比較,即可得出結(jié)論.

解答 解:∵02+02-2×0+4×0+1=1>0,
∴原點(diǎn)O在圓外,
故選:B.

點(diǎn)評(píng) 本題考查點(diǎn)與圓的位置關(guān)系,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.定義在(0,+∞)上的函數(shù)f(x),對(duì)于任意的m,n∈(0,+∞),都有f(mn)=f(m)+f(n)成立,當(dāng)x>1時(shí),f(x)<0.
(1)求證:1是函數(shù)f(x)的零點(diǎn);
(2)求證:f(x)是(0,+∞)上的減函數(shù);
(3)當(dāng)$f(2)=\frac{1}{2}$時(shí),解不等式f(ax+4)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線過點(diǎn)(2,$\sqrt{3}$),則雙曲線的離心率為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{7}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知x∈R,符號(hào)[x]表示不超過x的最大整數(shù),若函數(shù)f(x)=$\frac{[x]}{x}$(x>0),則給出以下四個(gè)結(jié)論正確的是( 。
A.函數(shù)f(x)的值域?yàn)椋?,1]
B.函數(shù)f(x)沒有零點(diǎn)
C.函數(shù)f(x)是(0,+∞)上的減函數(shù)
D.函數(shù)g(x)=f(x)-a有且僅有3個(gè)零點(diǎn)時(shí)$\frac{3}{4}$<a≤$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)y=x3-3x2-9x+5的極值情況是( 。
A.在x=-1處取得極大值,但沒有最小值
B.在x=3處取得極小值,但沒有最大值
C.在x=-1處取得極大值,在x=3處取得極小值
D.既無(wú)極大值也無(wú)極小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.為了了解高一年級(jí)學(xué)生的體能情況,某校抽取部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測(cè)試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖所示),圖中從左到右各小長(zhǎng)方形的面積之比為2:4:17:15:9:3,第二小組的頻數(shù)為12.則 樣本容量為150.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=(x2-3x)ex
(1)求函數(shù)f(x)的圖象在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)k<1時(shí),判斷方程$\frac{xf(x)}{{e}^{x}}$+x=kx-4的實(shí)根個(gè)數(shù),并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.計(jì)算
(1)$(\frac{2}{3}{)^0}+{2^{-2}}×(2\frac{1}{4}{)^{-\;\frac{1}{2}}}-(0.01{)^{0.5}}$
(2)log25625+lg$\frac{1}{100}$+lne.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.用數(shù)學(xué)歸納法證明:對(duì)于任意自然數(shù)n,數(shù)11n+2+122n+1是133的倍數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案