5.下列數(shù)是否是復(fù)數(shù),試找出它們各自的實(shí)部和虛部.
2+3i,8-4i,6,i,7i,0.

分析 直接由實(shí)部和虛部概念得答案.

解答 解:2+3i,8-4i,6,i,7i,0均為復(fù)數(shù),
2+3i的實(shí)部為2,虛部為3;
8-4i的實(shí)部為8,虛部為-4;
6的實(shí)部為6,虛部為0;
i的實(shí)部為0,虛部為1;
7i的實(shí)部為0,虛部為7;
0的實(shí)部和虛部均為0.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)y=ax(a>0,且a≠1)在[0,1]上的最大值與最小值之和為3,則a=( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x}-a,x<1}\\{{x}^{2}-4ax+3{a}^{2},x≥1}\end{array}\right.$
(Ⅰ)若a=1,在直角坐標(biāo)系中作出函數(shù)f(x)的大致圖象;
(Ⅱ)若f(x)≥2-x對(duì)任意x∈[1,2]恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)若函數(shù)f(x)恰有2個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=alnx+x2(a∈R).
(1)若函數(shù)f(x)在(1,+∞)上是增函數(shù),求a的取值范圍;
(2)求函數(shù)f(x)在[1,e]上的最大值及相應(yīng)的x值;
(3)若任意x∈[1,+∞),使得f(x)≤(a+2)x成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知數(shù)列{an}的首項(xiàng)a1=$\frac{1}{2}$,且滿足$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n+1}{n+2}$,n∈N*,則數(shù)列{$\frac{1}{{a}_{n}}$}的前10項(xiàng)和S10=65.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在三角形ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若acosA=bsinB,則sinAcosA+cos2B等于( 。
A.-$\frac{1}{2}$B.1C.-1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知|$\overrightarrow{a}$|=10,|$\overrightarrow$|=12,$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,求:
(1)$\overrightarrow{a}$$•\overrightarrow$;
(2)(3$\overrightarrow{a}$)•($\frac{1}{5}$$\overrightarrow$);
(3)(3$\overrightarrow$-2$\overrightarrow{a}$)•(4$\overrightarrow{a}$$+\overrightarrow$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.對(duì)于函數(shù)f1(x),f2(x),h(x),如果存在實(shí)數(shù)a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x),f2(x)的生成函數(shù).
(1)下面給出兩組函數(shù),h(x)是否分別為f1(x),f2(x)的生成函數(shù)?并說(shuō)明理由;
第一組:f1(x)=lg$\frac{x}{10}$,f2(x)=lg(10x),h(x)=x2-x+1;
第二組:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1;
(2)設(shè)f1(x)=log2x;${f_2}(x)={log_{\frac{1}{2}}}$x,a=2,b=1生成函數(shù)h(x),若不等式3h2(x)+2h(x)+t≤0在x∈[2,4]上有解,求實(shí)數(shù)t的取值范圍;
(3)設(shè)f1(x)=x(x>0),f2(x)=$\frac{1}{x}({x>0})$,取a>0,b>0,生成函數(shù)h(x)圖象的最低點(diǎn)為(2,8),若對(duì)于任意的正實(shí)數(shù)x1,x2,且x1+x2=1,試問(wèn)是否存在最大的常數(shù)m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個(gè)m的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.觀察下列不等式:
$1+\frac{1}{2^3}<\frac{7}{6}$,
$1+\frac{1}{2^3}+\frac{1}{3^3}<\frac{29}{24}$,
$1+\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}<\frac{49}{40}$,
$1+\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+\frac{1}{5^3}<\frac{37}{30}$,
….
照此規(guī)律,第五個(gè)不等式為$1+\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+\frac{1}{5^3}+\frac{1}{6^3}<$(  )
A.$\frac{26}{21}$B.$\frac{29}{20}$C.$\frac{67}{54}$D.$\frac{95}{78}$

查看答案和解析>>

同步練習(xí)冊(cè)答案