12.已知A={x|-1<x<4},B={x|m<x<2m-1}.
(1)當(dāng)m=3時(shí),求(∁RA)∪B;
(2)若A∩B=∅,求實(shí)數(shù)m的取值范圍.

分析 (1)當(dāng)m=3時(shí),B={x|3<x<5},CRA={x|x≤-1或x≥4},即可求(∁RA)∪B;
(2)若A∩B=∅,分類(lèi)討論,即可求實(shí)數(shù)m的取值范圍.

解答 解:(1)∵m=3,B={x|3<x<5},CRA={x|x≤-1或x≥4}…(4分)
∴(CRA)∪B={x|x≤-1或x>3}…(7分)
(2)當(dāng)B=∅時(shí),即m≥2m-1,得m≤1,滿(mǎn)足A∩B=∅…(10分)
當(dāng)B≠∅時(shí),即m<2m-1,得m>1,∵A∩B=∅,∴2m-1≤-1或m≥4,解得:m≥4
綜上所述:m≤1或m≥4…(15分)

點(diǎn)評(píng) 本題考查集合的關(guān)系與運(yùn)算,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知p:x2-2(a-1)x+a(a一2)≥0,q:2x2-3x一2≥0,若p是q的必要不充分條件.求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖用莖葉圖記錄了同班的甲、乙兩名學(xué)生4次數(shù)學(xué)考試成績(jī),其中甲的一次成績(jī)模糊不清,用x標(biāo)記.
(1)若甲、乙這4次的平均成績(jī)相同,確定甲、乙中誰(shuí)的成績(jī)更穩(wěn)定,并說(shuō)明理由;
(2)若甲這4次獲得的最高分正好是班上第一名(滿(mǎn)分100,且分?jǐn)?shù)為整數(shù)),且班上這次數(shù)學(xué)的第二名是91分,求甲這4次成績(jī)的平均分高于乙這4次成績(jī)的平均分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知數(shù)列{an}中,a1=1,an+1-an=2n,則a10等于91.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)集合M={x|-3<x<2},N={x|1≤x≤3},則M∩N=( 。
A.{x|1≤x<2}B.{x|1≤x≤2}C.{x|2<x≤3}D.{x|2≤x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)y=f(x)在區(qū)間(0,3)上為增函數(shù),y=g(x)在區(qū)間(2,5)上為減函數(shù),則函數(shù)y=f(g(x))在區(qū)間(2,3)上為(  )
A.增函數(shù)B.減函數(shù)C.先增后減D.單調(diào)性不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.圓C滿(mǎn)足:①圓心C在射線(xiàn)y=2x(x>0)上;    
②與x軸相切;  
③被直線(xiàn)y=x+2截得的線(xiàn)段長(zhǎng)為$\sqrt{14}$
(1)求圓C的方程;
(2)過(guò)直線(xiàn)x+y+3=0上一點(diǎn)P作圓C的切線(xiàn),設(shè)切點(diǎn)為E、F,求四邊形PECF面積的最小值,并求此時(shí)$\overrightarrow{PE}•\overrightarrow{PF}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列函數(shù)中,是偶函數(shù)且在區(qū)間(0,+∞)單調(diào)遞增的是( 。
A.y=-|x|B.y=log0.5|x|C.y=2xD.y=2x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)f(x)=log2(3-x)+$\sqrt{x+1}$的定義域是{x|-1≤x<3}.

查看答案和解析>>

同步練習(xí)冊(cè)答案