曲線
x=2cosθ-1
y=2sinθ+2
(θ為參數(shù))的一條對稱軸方程( 。
A、y=0B、x+y=0
C、x-y=0D、2x+y=0
考點:參數(shù)方程化成普通方程
專題:坐標(biāo)系和參數(shù)方程
分析:首先根據(jù)曲線的方程確定圓心,進(jìn)一步求出對稱軸所在的直線方程.
解答: 解:曲線
x=2cosθ-1
y=2sinθ+2
是以(-1,2)為圓心,2為半徑的圓.
所以:圓的對稱軸必過圓心.
所以經(jīng)過圓心的直線方程為:2x+y=0
故選:D
點評:本題考查的知識要點:圓的參數(shù)方程的應(yīng)用,圓的對稱軸的應(yīng)用,屬于基礎(chǔ)題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+2x,x≥0
2x-x2,x<0
,若f(-x)+f(x)<2f(1),則實數(shù)x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+(lga+2)x+lgb,f(-1)=-2,當(dāng)x∈R時,f(x)≥2x恒成立,求實數(shù)a的值,并求此時f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,AD是⊙O的切線,AB=
2
,AC=
3
,∠ACB=
π
4
,那么∠CAD=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x>4,函數(shù)y=x+
1
x-4
,當(dāng)x=
 
時,函數(shù)有最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1
3
x+y=0,l2:kx-y+1=0,若l1到l2的夾角為60°,則k的值是(  )
A、
3
或0
B、-
3
或0
C、
3
D、-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)的二次系數(shù)為a,且不等式f(x)>-2x的解集為{x|1<x<3}.
(1)若函數(shù)y=f(x)+6a有且只有一個零點,求f(x)的解析式;
(2)記f(x)的最大值為h(a),求h(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

取一根長度為30cm的繩子,拉直后在任意位置剪斷,那么剪得兩段的長都不小于10cm的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由無理數(shù)引發(fā)的數(shù)學(xué)危機已知延續(xù)帶19世紀(jì),直到1872年,德國數(shù)學(xué)家戴德金提出了“戴德金分割”,才結(jié)束了持續(xù)2000多年的數(shù)學(xué)史上的第一次大危機.所謂戴金德分割,是指將有理數(shù)集Q劃分為兩個非空的子集M與N,且滿足M∪N=Q,M∩N=∅,M中的每一個元素都小于N中的每一個元素,則稱(M,N)為戴金德分割.試判斷,對于任一戴金德分割(M,N),下列選項中不可能恒成立的是( 。
A、M沒有最大元素,N有一個最小元素
B、M沒有最大元素,N也沒有最小元素
C、M有一個最大元素,N有一個最小元素
D、M有一個最大元素,N沒有最小元素

查看答案和解析>>

同步練習(xí)冊答案