8.已知函數(shù)f(x)=lnx-ax2+ax恰有兩個零點,則實數(shù)a的取值范圍為( 。
A.(-∞,0)B.(0,+∞)C.(0,1)∪(1,+∞)D.(-∞,0)∪{1}

分析 函數(shù)f(x)的定義域為(0,+∞),由題知方程 lnx-ax2+ax=0,即方程$\frac{lnx}{x}=a(x-1)$恰有兩解.即兩個函數(shù)有兩個交點.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值,即可得出.

解答 解:函數(shù)f(x)的定義域為(0,+∞),由題知方程 lnx-ax2+ax=0,即方程$\frac{lnx}{x}=a(x-1)$恰有兩解.
設(shè)$g(x)=\frac{lnx}{x}$,則g'(x)=$\frac{1-lnx}{x^2}$,當0<x<e時,g'(x)>0,當x>e時,g'(x)<0,
∴g(x)在(0,e)上是增函數(shù),在(e,+∞)上是減函數(shù),且g(1)=0,當x>e時,g(x)>0,g'(1)=1,
作出函數(shù)y=g(x)與函數(shù)y=a(x-1)的圖象如下圖所示,
由圖可知,函數(shù)y=g(x)的圖象與函數(shù)y=a(x-1)的圖象恰有2個交點的充要條件為0<a<1或a>1,
故選:C.

點評 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值,考查了轉(zhuǎn)化能力與計算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.袋中有3個黑球,3個紅球,小球的形狀大小質(zhì)地完全一樣
(Ⅰ)若無放回地任取3球時,求至少取得一個紅球的概率;
(Ⅱ)若有放回地連續(xù)抽3次,每次取1球時,求取到紅球數(shù)X的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.命題“?x∈R,ax2-2ax+1≤0”的否定是?x∈R,ax2-2ax+1>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知某產(chǎn)品的價格函數(shù)p=10-$\frac{q}{5}$,成本函數(shù)為C=50+2q,其中,q為產(chǎn)量,問產(chǎn)量為多少時總利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.定義域為R的奇函數(shù)f(x)是減函數(shù),當f(a)+f(a2)>0成立時,實數(shù)a的取值范圍是( 。
A.a<-1或a>0B.-1<a<0C.a<0或a>1D.a<-1或a>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在直棱柱ABC-A1B1C1中,平面A1BC⊥平面A1ABB1,且AA1=AB=BC=2.M、N分別為A1B、B1C1中點.
(1)求三棱錐A1-MNC的體積.
(2)求證:AB⊥BC
(3)(文科做)求AC與平面A1BC所成角的大。
(理科做)求銳二面角A-A1C-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知cos($\frac{π}{4}$-θ)=$\frac{{\sqrt{3}}}{3}$,求cos($\frac{3π}{4}$+θ)-sin2(θ-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.比較$\sqrt{7}$-$\sqrt{5}$與2$\sqrt{2}$-$\sqrt{6}$的大小為>(用“=”,“>”或“<”填空)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在△ABC中,a,b,c分別是角A,B,C所對邊的邊長,若cosA+sinA-$\frac{2}{cosC+sinC}$=0,則$\frac{a+c}$的值是( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

同步練習(xí)冊答案